DOI QR코드

DOI QR Code

Calcium silicate-based root canal sealers: a literature review

  • Lim, Miyoung (Department of Conservative Dentistry, College of Dentistry, Dankook University) ;
  • Jung, Chanyong (Department of Conservative Dentistry, College of Dentistry, Dankook University) ;
  • Shin, Dong-Hoon (Department of Conservative Dentistry, College of Dentistry, Dankook University) ;
  • Cho, Yong-bum (Department of Conservative Dentistry, College of Dentistry, Dankook University) ;
  • Song, Minju (Department of Conservative Dentistry, College of Dentistry, Dankook University)
  • Received : 2019.09.12
  • Accepted : 2019.10.24
  • Published : 2020.08.31

Abstract

Epoxy resin-based sealers are currently widely used, and several studies have considered AH Plus to be the gold-standard sealer. However, it still has limitations, including possible mutagenicity, cytotoxicity, inflammatory response, and hydrophobicity. Drawing upon the advantages of mineral trioxide aggregate, calcium silicate-based sealers were introduced with high levels of biocompatibility and hydrophilicity. Because of the hydrophilic environment in root canals, water resorption and solubility of root canal sealers are important factors contributing to their stability. Sealers displaying lower microleakage and stronger push-out bond strength are also needed to endure the dynamic tooth environment. Although the physical properties of calcium silicate-based sealers meet International Organization for Standardization recommendations, and they have consistently reported to be biocompatible, they have not overcome conventional resin-based sealers in actual practice. Therefore, further studies aiming to improve the physical properties of calcium silicate-based sealers are needed.

Keywords

References

  1. Schilder H. Filling root canals in three dimensions. 1967. J Endod 2006;32:281-290. https://doi.org/10.1016/j.joen.2006.02.007
  2. Orstavik D. Materials used for root canal obturation: technical, biological and clinical testing. Endod Topics 2005;12:25-38. https://doi.org/10.1111/j.1601-1546.2005.00197.x
  3. Grossman L. Endodontic practice. 10th ed. Philadelphia (PA): Henry Kimpton Publishers; 1981.
  4. Manappallil JJ. Basic dental materials. 4th ed. New Delhi: Jaypee Brothers Medical Publishers; 2015.
  5. Berman LH, Hargreaves K, Cohen S. Cohen's pathways of the pulp expert consult. 10th ed. Maryland Heights (MO): Mosby Elsevier; 2010.
  6. Garrido AD, Lia RC, Franca SC, da Silva JF, Astolfi-Filho S, Sousa-Neto MD. Laboratory evaluation of the physicochemical properties of a new root canal sealer based on Copaifera multijuga oil-resin. Int Endod J 2010;43:283-291. https://doi.org/10.1111/j.1365-2591.2009.01678.x
  7. Lee JK, Kwak SW, Ha JH, Lee W, Kim HC. Physicochemical properties of epoxy resin-based and bioceramic-based root canal sealers. Bioinorg Chem Appl 2017;2017:2582849.
  8. Poggio C, Arciola CR, Dagna A, Colombo M, Bianchi S, Visai L. Solubility of root canal sealers: a comparative study. Int J Artif Organs 2010;33:676-681. https://doi.org/10.1177/039139881003300914
  9. McMichen FR, Pearson G, Rahbaran S, Gulabivala K. A comparative study of selected physical properties of five root-canal sealers. Int Endod J 2003;36:629-635. https://doi.org/10.1046/j.1365-2591.2003.00701.x
  10. Schweikl H, Schmalz G, Federlin M. Mutagenicity of the root canal sealer AHPlus in the Ames test. Clin Oral Investig 1998;2:125-129. https://doi.org/10.1007/s007840050057
  11. Azar NG, Heidari M, Bahrami ZS, Shokri F. In vitro cytotoxicity of a new epoxy resin root canal sealer. J Endod 2000;26:462-465. https://doi.org/10.1097/00004770-200008000-00008
  12. Cohen BI, Pagnillo MK, Musikant BL, Deutsch AS. An in vitro study of the cytotoxicity of two root canal sealers. J Endod 2000;26:228-229. https://doi.org/10.1097/00004770-200004000-00008
  13. Sousa CJ, Montes CR, Pascon EA, Loyola AM, Versiani MA. Comparison of the intraosseous biocompatibility of AH Plus, EndoREZ, and Epiphany root canal sealers. J Endod 2006;32:656-662. https://doi.org/10.1016/j.joen.2005.12.003
  14. Roggendorf MJ, Ebert J, Petschelt A, Frankenberger R. Influence of moisture on the apical seal of root canal fillings with five different types of sealer. J Endod 2007;33:31-33. https://doi.org/10.1016/j.joen.2006.07.006
  15. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater 2005;21:297-303. https://doi.org/10.1016/j.dental.2004.05.010
  16. Asgary S, Parirokh M, Eghbal MJ, Stowe S, Brink F. A qualitative X-ray analysis of white and grey mineral trioxide aggregate using compositional imaging. J Mater Sci Mater Med 2006;17:187-191. https://doi.org/10.1007/s10856-006-6823-3
  17. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod 2010;36:16-27. https://doi.org/10.1016/j.joen.2009.09.006
  18. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993;19:541-544. https://doi.org/10.1016/S0099-2399(06)81282-3
  19. Darvell BW, Wu RC. "MTA"-an Hydraulic Silicate Cement: review update and setting reaction. Dent Mater 2011;27:407-422. https://doi.org/10.1016/j.dental.2011.02.001
  20. Donnermeyer D, Burklein S, Dammaschke T, Schafer E. Endodontic sealers based on calcium silicates: a systematic review. Odontology 2019;107:421-436. https://doi.org/10.1007/s10266-018-0400-3
  21. Donnermeyer D, Dornseifer P, Schafer E, Dammaschke T. The push-out bond strength of calcium silicate-based endodontic sealers. Head Face Med 2018;14:13. https://doi.org/10.1186/s13005-018-0170-8
  22. Urban K, Neuhaus J, Donnermeyer D, Schafer E, Dammaschke T. Solubility and pH value of 3 different root canal sealers: a long-term investigation. J Endod 2018;44:1736-1740. https://doi.org/10.1016/j.joen.2018.07.026
  23. Asawaworarit W, Yachor P, Kijsamanmith K, Vongsavan N. Comparison of the apical sealing ability of calcium silicate-based sealer and resin-based sealer using the fluid-filtration technique. Med Princ Pract 2016;25:561-565. https://doi.org/10.1159/000450577
  24. Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J 2017;50 Suppl 2:e120-e136. https://doi.org/10.1111/iej.12856
  25. Vitti RP, Prati C, Silva EJ, Sinhoreti MA, Zanchi CH, de Souza e Silva MG, Ogliari FA, Piva E, Gandolfi MG. Physical properties of MTA Fillapex sealer. J Endod 2013;39:915-918. https://doi.org/10.1016/j.joen.2013.04.015
  26. International Organization of Standardization. International Standard ISO 6876. Specification for dental root canal sealing materials. 3rd ed. Geneva: International Organization of Standardization; 2012.
  27. Kebudi Benezra M, Schembri Wismayer P, Camilleri J. Influence of environment on testing of hydraulic sealers. Sci Rep 2017;7:17927. https://doi.org/10.1038/s41598-017-17280-7
  28. Borges RP, Sousa-Neto MD, Versiani MA, Rached-Junior FA, De-Deus G, Miranda CE, Pecora JD. Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test. Int Endod J 2012;45:419-428. https://doi.org/10.1111/j.1365-2591.2011.01992.x
  29. Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Physical properties of 5 root canal sealers. J Endod 2013;39:1281-1286. https://doi.org/10.1016/j.joen.2013.06.012
  30. Ersahan S, Aydin C. Solubility and apical sealing characteristics of a new calcium silicate-based root canal sealer in comparison to calcium hydroxide-, methacrylate resin- and epoxy resin-based sealers. Acta Odontol Scand 2013;71:857-862. https://doi.org/10.3109/00016357.2012.734410
  31. Poggio C, Dagna A, Ceci M, Meravini MV, Colombo M, Pietrocola G. Solubility and pH of bioceramic root canal sealers: a comparative study. J Clin Exp Dent 2017;9:e1189-e1194. https://doi.org/10.4317/jced.54040
  32. Colombo M, Poggio C, Dagna A, Meravini MV, Riva P, Trovati F, Pietrocola G. Biological and physico-chemical properties of new root canal sealers. J Clin Exp Dent 2018;10:e120-e126.
  33. Prullage RK, Urban K, Schafer E, Dammaschke T. Material properties of a tricalcium silicate-containing, a mineral trioxide aggregate-containing, and an epoxy resin-based root canal sealer. J Endod 2016;42:1784-1788. https://doi.org/10.1016/j.joen.2016.09.018
  34. Wu MK, De Gee AJ, Wesselink PR, Moorer WR. Fluid transport and bacterial penetration along root canal fillings. Int Endod J 1993;26:203-208. https://doi.org/10.1111/j.1365-2591.1993.tb00560.x
  35. Kim Y, Kim BS, Kim YM, Lee D, Kim SY. The penetration ability of calcium silicate root canal sealers into dentinal tubules compared to conventional resin-based sealer: a confocal laser scanning microscopy study. Materials (Basel) 2019;12:E531.
  36. Ballullaya SV, Vinay V, Thumu J, Devalla S, Bollu IP, Balla S. Stereomicroscopic dye leakage measurement of six different root canal sealers. J Clin Diagn Res 2017;11:ZC65-ZC68.
  37. Pawar SS, Pujar MA, Makandar SD. Evaluation of the apical sealing ability of bioceramic sealer, AH plus & epiphany: an in vitro study. J Conserv Dent 2014;17:579-582. https://doi.org/10.4103/0972-0707.144609
  38. Jafari F, Jafari S. Importance and methodologies of endodontic microleakage studies: a systematic review. J Clin Exp Dent 2017;9:e812-e819.
  39. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 2012;91:454-459. https://doi.org/10.1177/0022034512443068
  40. Jeong JW, DeGraft-Johnson A, Dorn SO, Di Fiore PM. Dentinal tubule penetration of a calcium silicate-based root canal sealer with different obturation methods. J Endod 2017;43:633-637. https://doi.org/10.1016/j.joen.2016.11.023
  41. Holland R, de Souza V, Nery MJ, Otoboni Filho JA, Bernabe PF, Dezan Junior E. Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J Endod 1999;25:161-166. https://doi.org/10.1016/S0099-2399(99)80134-4
  42. Gandolfi MG, Prati C. MTA and F-doped MTA cements used as sealers with warm gutta-percha. Long-term study of sealing ability. Int Endod J 2010;43:889-901. https://doi.org/10.1111/j.1365-2591.2010.01763.x
  43. Iacono F, Gandolfi MG, Huffman B, Sword J, Agee K, Siboni F, Tay F, Prati C, Pashley D. Push-out strength of modified Portland cements and resins. Am J Dent 2010;23:43-46.
  44. Weller RN, Tay KC, Garrett LV, Mai S, Primus CM, Gutmann JL, Pashley DH, Tay FR. Microscopic appearance and apical seal of root canals filled with gutta-percha and ProRoot Endo Sealer after immersion in a phosphate-containing fluid. Int Endod J 2008;41:977-986. https://doi.org/10.1111/j.1365-2591.2008.01462.x
  45. Neelakantan P, Subbarao C, Subbarao CV, De-Deus G, Zehnder M. The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer. Int Endod J 2011;44:491-498. https://doi.org/10.1111/j.1365-2591.2010.01848.x
  46. Lee YL, Lin FH, Wang WH, Ritchie HH, Lan WH, Lin CP. Effects of EDTA on the hydration mechanism of mineral trioxide aggregate. J Dent Res 2007;86:534-538. https://doi.org/10.1177/154405910708600609
  47. Wu MK, Bud MG, Wesselink PR. The quality of single cone and laterally compacted gutta-percha fillings in small and curved root canals as evidenced by bidirectional radiographs and fluid transport measurements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:946-951. https://doi.org/10.1016/j.tripleo.2009.07.046
  48. Zhang W, Li Z, Peng B. Assessment of a new root canal sealer's apical sealing ability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e79-e82. https://doi.org/10.1016/j.tripleo.2009.02.024
  49. Fernandez R, Restrepo JS, Aristizabal DC, Alvarez LG. Evaluation of the filling ability of artificial lateral canals using calcium silicate-based and epoxy resin-based endodontic sealers and two gutta-percha filling techniques. Int Endod J 2016;49:365-373. https://doi.org/10.1111/iej.12454
  50. Nagas E, Cehreli Z, Uyanik MO, Durmaz V. Bond strength of a calcium silicate-based sealer tested in bulk or with different main core materials. Braz Oral Res 2014;28:S1806-83242014000100256.
  51. DeLong C, He J, Woodmansey KF. The effect of obturation technique on the push-out bond strength of calcium silicate sealers. J Endod 2015;41:385-388. https://doi.org/10.1016/j.joen.2014.11.002
  52. Reyes-Carmona JF, Felippe MS, Felippe WT. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. J Endod 2010;36:286-291. https://doi.org/10.1016/j.joen.2009.10.009
  53. Camilleri J. Sealers and warm gutta-percha obturation techniques. J Endod 2015;41:72-78. https://doi.org/10.1016/j.joen.2014.06.007
  54. Viapiana R, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Camilleri J. Investigation of the effect of sealer use on the heat generated at the external root surface during root canal obturation using warm vertical compaction technique with System B heat source. J Endod 2014;40:555-561. https://doi.org/10.1016/j.joen.2013.09.026
  55. Dabaj P, Kalender A, Unverdi Eldeniz A. Push-out bond strength and SEM evaluation in roots filled with two different techniques using new and conventional sealers. Materials (Basel) 2018;11:E1620.
  56. Qu W, Bai W, Liang YH, Gao XJ. Influence of warm vertical compaction technique on physical properties of root canal sealers. J Endod 2016;42:1829-1833. https://doi.org/10.1016/j.joen.2016.08.014
  57. Zhang W, Li Z, Peng B. Ex vivo cytotoxicity of a new calcium silicate-based canal filling material. Int Endod J 2010;43:769-774. https://doi.org/10.1111/j.1365-2591.2010.01733.x
  58. Chang SW, Lee SY, Kang SK, Kum KY, Kim EC. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endod 2014;40:1642-1648. https://doi.org/10.1016/j.joen.2014.04.006
  59. Eldeniz AU, Shehata M, Hogg C, Reichl FX. DNA double-strand breaks caused by new and contemporary endodontic sealers. Int Endod J 2016;49:1141-1151. https://doi.org/10.1111/iej.12577
  60. Jung S, Libricht V, Sielker S, Hanisch MR, Schafer E, Dammaschke T. Evaluation of the biocompatibility of root canal sealers on human periodontal ligament cells ex vivo. Odontology 2019;107:54-63. https://doi.org/10.1007/s10266-018-0380-3
  61. Taraslia V, Anastasiadou E, Lignou C, Keratiotis G, Agrafioti A, Kontakiotis EG. Assessment of cell viability in four novel endodontic sealers. Eur J Dent 2018;12:287-291. https://doi.org/10.4103/ejd.ejd_9_18
  62. Ames JM, Loushine RJ, Babb BR, Bryan TE, Lockwood PE, Sui M, Roberts S, Weller RN, Pashley DH, Tay FR. Contemporary methacrylate resin-based root canal sealers exhibit different degrees of ex vivo cytotoxicity when cured in their self-cured mode. J Endod 2009;35:225-228. https://doi.org/10.1016/j.joen.2008.11.008
  63. Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C, Rodriguez-Lozano FJ. Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J 2017;50:875-884. https://doi.org/10.1111/iej.12703
  64. Kebudi Benezra M, Schembri Wismayer P, Camilleri J. Interfacial characteristics and cytocompatibility of hydraulic sealer cements. J Endod 2018;44:1007-1017. https://doi.org/10.1016/j.joen.2017.11.011
  65. Zhou HM, Du TF, Shen Y, Wang ZJ, Zheng YF, Haapasalo M. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J Endod 2015;41:56-61. https://doi.org/10.1016/j.joen.2014.09.012
  66. Poggio C, Riva P, Chiesa M, Colombo M, Pietrocola G. Comparative cytotoxicity evaluation of eight root canal sealers. J Clin Exp Dent 2017;9:e574-e578.
  67. da Silva EJ, Zaia AA, Peters OA. Cytocompatibility of calcium silicate-based sealers in a three-dimensional cell culture model. Clin Oral Investig 2017;21:1531-1536. https://doi.org/10.1007/s00784-016-1918-9
  68. Portella FF, Collares FM, Dos Santos LA, dos Santos BP, Camassola M, Leitune VC, Samuel SM. Glycerol salicylate-based containing ${\alpha}$-tricalcium phosphate as a bioactive root canal sealer. J Biomed Mater Res B Appl Biomater 2015;103:1663-1669. https://doi.org/10.1002/jbm.b.33326
  69. Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, Pashley DH, Tay FR. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod 2011;37:673-677. https://doi.org/10.1016/j.joen.2011.01.003
  70. Lee BN, Hong JU, Kim SM, Jang JH, Chang HS, Hwang YC, Hwang IN, Oh WM. Anti-inflammatory and osteogenic effects of calcium silicate-based root canal sealers. J Endod 2019;45:73-78. https://doi.org/10.1016/j.joen.2018.09.006
  71. Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod 2009;35:1051-1055. https://doi.org/10.1016/j.joen.2009.04.022
  72. Sjogren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 1997;30:297-306. https://doi.org/10.1111/j.1365-2591.1997.tb00714.x
  73. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 2006;32:93-98. https://doi.org/10.1016/j.joen.2005.10.049
  74. Desai S, Chandler N. Calcium hydroxide-based root canal sealers: a review. J Endod 2009;35:475-480. https://doi.org/10.1016/j.joen.2008.11.026
  75. Jafari F, Jafari S. Composition and physicochemical properties of calcium silicate based sealers: a review article. J Clin Exp Dent 2017;9:e1249-e1255. https://doi.org/10.4317/jced.54103
  76. Cai M, Abbott P, Castro Salgado J. Hydroxyl ion diffusion through radicular dentine when calcium hydroxide is used under different conditions. Materials (Basel) 2018;11:E152.
  77. Candeiro GT, Moura-Netto C, D'Almeida-Couto RS, Azambuja-Junior N, Marques MM, Cai S, Gavini G. Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer. Int Endod J 2016;49:858-864. https://doi.org/10.1111/iej.12523
  78. Arias-Moliz MT, Camilleri J. The effect of the final irrigant on the antimicrobial activity of root canal sealers. J Dent 2016;52:30-36. https://doi.org/10.1016/j.jdent.2016.06.008
  79. Wang Z, Shen Y, Haapasalo M. Dentin extends the antibacterial effect of endodontic sealers against Enterococcus faecalis biofilms. J Endod 2014;40:505-508. https://doi.org/10.1016/j.joen.2013.10.042
  80. Alsubait S, Albader S, Alajlan N, Alkhunaini N, Niazy A, Almahdy A. Comparison of the antibacterial activity of calcium silicate- and epoxy resin-based endodontic sealers against Enterococcus faecalis biofilms: a confocal laser-scanning microscopy analysis. Odontology 2019;107:513-520. https://doi.org/10.1007/s10266-019-00425-7
  81. Nirupama DN, Nainan MT, Ramaswamy R, Muralidharan S, Usha HH, Sharma R, Gupta S. In vitro evaluation of the antimicrobial efficacy of four endodontic biomaterials against Enterococcus faecalis, Candida albicans, and Staphylococcus aureus. Int J Biomater 2014;2014:383756.
  82. Shin JH, Lee DY, Lee SH. Comparison of antimicrobial activity of traditional and new developed root sealers against pathogens related root canal. J Dent Sci 2018;13:54-59. https://doi.org/10.1016/j.jds.2017.10.007
  83. Willershausen I, Callaway A, Briseno B, Willershausen B. In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers. Head Face Med 2011;7:15. https://doi.org/10.1186/1746-160X-7-15
  84. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27:2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
  85. Zhang W, Li Z, Peng B. Effects of iRoot SP on mineralization-related genes expression in MG63 cells. J Endod 2010;36:1978-1982. https://doi.org/10.1016/j.joen.2010.08.038
  86. Camps J, Jeanneau C, El Ayachi I, Laurent P, About I. Bioactivity of a calcium silicate-based endodontic cement (BioRoot RCS): interactions with human periodontal ligament cells in vitro. J Endod 2015;41:1469-1473. https://doi.org/10.1016/j.joen.2015.04.011
  87. Guven EP, Tasli PN, Yalvac ME, Sofiev N, Kayahan MB, Sahin F. In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J 2013;46:1173-1182. https://doi.org/10.1111/iej.12115
  88. Loison-Robert LS, Tassin M, Bonte E, Berbar T, Isaac J, Berdal A, Simon S, Fournier BP. In vitro effects of two silicate-based materials, Biodentine and BioRoot RCS, on dental pulp stem cells in models of reactionary and reparative dentinogenesis. PLoS One 2018;13:e0190014. https://doi.org/10.1371/journal.pone.0190014
  89. Dimitrova-Nakov S, Uzunoglu E, Ardila-Osorio H, Baudry A, Richard G, Kellermann O, Goldberg M. In vitro bioactivity of $Bioroot^{TM}$ RCS, via A4 mouse pulpal stem cells. Dent Mater 2015;31:1290-1297. https://doi.org/10.1016/j.dental.2015.08.163
  90. Yoo YJ, Baek SH, Kum KY, Shon WJ, Woo KM, Lee W. Dynamic intratubular biomineralization following root canal obturation with pozzolan-based mineral trioxide aggregate sealer cement. Scanning 2016;38:50-56. https://doi.org/10.1002/sca.21240
  91. Nawal RR, Parande M, Sehgal R, Naik A, Rao NR. A comparative evaluation of antimicrobial efficacy and flow properties for Epiphany, Guttaflow and AH-Plus sealer. Int Endod J 2011;44:307-313. https://doi.org/10.1111/j.1365-2591.2010.01829.x
  92. Al-Haddad A, Che Ab Aziz ZA. Bioceramic-based root canal sealers: a review. Int J Biomater 2016;2016:9753210.
  93. Uzunoglu-Ozyurek E, Erdogan O, Aktemur Turker S. Effect of calcium hydroxide dressing on the dentinal tubule penetration of 2 different root canal sealers: a confocal laser scanning microscopic study. J Endod 2018;44:1018-1023. https://doi.org/10.1016/j.joen.2018.02.016
  94. Viapiana R, Moinzadeh AT, Camilleri L, Wesselink PR, Tanomaru Filho M, Camilleri J. Porosity and sealing ability of root fillings with gutta-percha and BioRoot RCS or AH Plus sealers. Evaluation by three ex vivo methods. Int Endod J 2016;49:774-782. https://doi.org/10.1111/iej.12513
  95. Hwang JH, Chung J, Na HS, Park E, Kwak S, Kim HC. Comparison of bacterial leakage resistance of various root canal filling materials and methods: confocal laser-scanning microscope study. Scanning 2015;37:422-428. https://doi.org/10.1002/sca.21231
  96. Deniz Sungur D, Moinzadeh AT, Wesselink PR, Calt Tarhan S, Ozok AR. Sealing efficacy of a single-cone root filling after post space preparation. Clin Oral Investig 2016;20:1071-1077. https://doi.org/10.1007/s00784-015-1593-2
  97. Oh S, Cho SI, Perinpanayagam H, You J, Hong SH, Yoo YJ, Chang SW, Shon WJ, Yoo JS, Baek SH, Kum KY. Novel calcium zirconate silicate cement biomineralize and seal root canals. Materials (Basel) 2018;11:E588.
  98. Bidar M, Sadeghalhoseini N, Forghani M, Attaran N. Effect of the smear layer on apical seals produced by two calcium silicate-based endodontic sealers. J Oral Sci 2014;56:215-219. https://doi.org/10.2334/josnusd.56.215
  99. Ulusoy OI, Nayir Y, Celik K, Yaman SD. Apical microleakage of different root canal sealers after use of maleic acid and EDTA as final irrigants. Braz Oral Res 2014;28:S1806-83242014000100257.
  100. Donnermeyer D, Vahdat-Pajouh N, Schafer E, Dammaschke T. Influence of the final irrigation solution on the push-out bond strength of calcium silicate-based, epoxy resin-based and silicone-based endodontic sealers. Odontology 2019;107:231-236. https://doi.org/10.1007/s10266-018-0392-z
  101. Silva EJ, Carvalho NK, Prado MC, Zanon M, Senna PM, Souza EM, De-Deus G. Push-out bond strength of injectable Pozzolan-based root canal sealer. J Endod 2016;42:1656-1659. https://doi.org/10.1016/j.joen.2016.08.009
  102. Ersahan S, Aydin C. Dislocation resistance of iRoot SP, a calcium silicate-based sealer, from radicular dentine. J Endod 2010;36:2000-2002. https://doi.org/10.1016/j.joen.2010.08.037
  103. Alsubait SA, Al Ajlan R, Mitwalli H, Aburaisi N, Mahmood A, Muthurangan M, Almadhri R, Alfayez M, Anil S. Cytotoxicity of different concentrations of three root canal sealers on human mesenchymal stem cells. Biomolecules 2018;8:E68.
  104. Lim ES, Park YB, Kwon YS, Shon WJ, Lee KW, Min KS. Physical properties and biocompatibility of an injectable calcium-silicate-based root canal sealer: in vitro and in vivo study. BMC Oral Health 2015;15:129. https://doi.org/10.1186/s12903-015-0112-9

Cited by

  1. Bone repair in defects filled with AH Plus sealer and different concentrations of MTA: a study in rat tibiae vol.46, 2020, https://doi.org/10.5395/rde.2021.46.e48
  2. Development of A Nano-Apatite Based Composite Sealer for Endodontic Root Canal Filling vol.5, pp.1, 2020, https://doi.org/10.3390/jcs5010030
  3. Characterization, Antimicrobial Effects, and Cytocompatibility of a Root Canal Sealer Produced by Pozzolan Reaction between Calcium Hydroxide and Silica vol.14, pp.11, 2020, https://doi.org/10.3390/ma14112863
  4. In Vitro Microleakage Evaluation of Bioceramic and Zinc-Eugenol Sealers with Two Obturation Techniques vol.11, pp.6, 2020, https://doi.org/10.3390/coatings11060727
  5. Calcium Silicate-Based Root Canal Sealers: A Narrative Review and Clinical Perspectives vol.14, pp.14, 2020, https://doi.org/10.3390/ma14143965
  6. Influence of variations in the environmental pH on the solubility and water sorption of a calcium silicate‐based root canal sealer vol.54, pp.8, 2020, https://doi.org/10.1111/iej.13526
  7. Apical Sealing Ability of Two Calcium Silicate-Based Sealers Using a Radioactive Isotope Method: An In Vitro Apexification Model vol.14, pp.21, 2020, https://doi.org/10.3390/ma14216456
  8. Synthesis and Characterization of Novel Calcium-Silicate Nanobioceramics with Magnesium: Effect of Heat Treatment on Biological, Physical and Chemical Properties vol.4, pp.4, 2020, https://doi.org/10.3390/ceramics4040045