DOI QR코드

DOI QR Code

An investigation of the thermodynamic effect on the response of FG beam on elastic foundation

  • Bouiadjra, Rabbab Bachir (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Bachiri, Attia (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Benyoucef, Samir (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Fahsi, Bouazza (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bernard, Fabrice (Laboratoire de Genie Civil et Genie Mecanique, INSA de Rennes)
  • Received : 2020.03.03
  • Accepted : 2020.05.18
  • Published : 2020.10.10

Abstract

This study presents an analytical approach to investigate the thermodynamic behavior of functionally graded beam resting on elastic foundations. The formulation is based on a refined deformation theory taking into consideration the stretching effect and the type of elastic foundation. The displacement field used in the present refined theory contains undetermined integral forms and involves only three unknowns to derive. The mechanical characteristics of the beam are assumed to be varied across the thickness according to a simple exponential law distribution. The beam is supposed simply supported and therefore the Navier solution is used to derive analytical solution. Verification examples demonstrate that the developed theory is very accurate in describing the response of FG beams subjected to thermodynamic loading. Numerical results are carried out to show the effects of the thermodynamic loading on the response of FG beams resting on elastic foundation.

Keywords

Acknowledgement

Authors would like to acknowledge the support provided by the Directorate General for Scientific Research and Technological Development (DGRSDT).

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A., Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Adda Bedia, W., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T., Alhodaly, M.Sh. (2019), "A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  3. Addou, F.Y., Meradjah, M., Bousahla, A.A, Benachour, A., Bourada, F., Tounsi, A., Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  4. Ahmed, R.A., Fenjan, R.M., Faleh, N.M. (2019), "Analyzing postbuckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180 . https://doi.org/10.12989/gae.2019.17.2.175.
  5. Ait Atmane, H., Tounsi, A., Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  6. Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M., Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177
  7. Alimirzaei, S., Mohammadimehr, M., Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  8. Arani, A.J., and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete., 17(5), 567-578.http://dx.doi.org/10.12989/cac.2016.17.5.567.
  9. Asghar, S., Naeem, M.N., Hussain, M., Taj, M., Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  10. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  11. Avcar, M., & Mohammed, W.K.M., (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2
  12. Ayat, H., Kellouche, Y., Ghrici, M., Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Design, 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  13. Bachir Bouiadjra, R., Mahmoudi, A., Benyoucef, S., Tounsi, A. and Bernard, F., (2018), "Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models", Struct. Eng. Mech, 66(3), 317-328. https://doi.org/10.12989/sem.2018.66.3.317.
  14. Bachiri, A., Bourada, M., Mahmoudi, A., Benyoucef, S., Tounsi, A., (2018), "Thermodynamic effect on the bending response of elastic foundation FG plate by using a novel four variable refined plate theory", J. Thermal Stresses, 41(8), 1042- 1062. https://doi.org/10.1080/01495739.2018.1452169.
  15. Balubaid, M., Tounsi, A., Dakhel, B., Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  16. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707.
  17. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A., Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Composite Structures, 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  18. Behera, S., Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Design, 3(3), 213-232. https://doi.org/10.12989/acd.2017.2.3.165.
  19. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A., Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  20. Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A., Mahmoud, S.R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409
  21. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Adda Bedia, E.A., Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  22. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021
  23. Berghouti, H., Adda Bedia, E.A., Benkhedda, A., Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  24. Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K., Patel, B. (2020), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Natural Fiber, 17(4), 505-519. https://doi.org/10.1080/15440478.2018.1503129.
  25. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  26. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  27. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A., Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  28. Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, (Accepted).
  29. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A., Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  30. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A., Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  31. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  32. Calio, I., Greco, A., (2013), "Free vibrations of Timoshenko beam-columns on Pasternak foundations", J. Vib. Control, 19, 686-696. https://doi.org/10.1177/1077546311433609.
  33. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A., Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  34. Chen, Y., Jin, G., Zhang, C., Ye, T., Xue, Y., (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B. Eng., 153, 376-386 https://doi.org/10.1016/j.compositesb.2018.08.111
  35. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471
  36. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Design, 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  37. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R., Panda, S.K. (2018), "Modal analysis of FG sandwich doubly curved shell structure", Struct. Eng. Mech., 68(6), 721-733. https://doi.org/10.12989/sem.2018.68.6.721.
  38. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R., Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
  39. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A., Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  40. Draoui, A., Zidour, M., Tounsi, A., Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  41. Duy, H.T., Van, T.N., Noh, H.C., (2014), "Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation", Struct. Eng. Mech. 52(5), 1033-1049. https://doi.org/10.12989/sem.2014.52.5.1033.
  42. Faleh, N.M., Ahmed, R.A., Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007
  43. Faleh, N.M., Fenjan, R. M., & Ahmed, R. A. (2020). "Forced Vibrations of Multi-phase Crystalline Porous Shells Based on Strain Gradient Elasticity and Pulse Load Effects", J. Vib. Eng. Technol.., 10.1007/s42417-020-00203-8.
  44. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A., Faleh, N.M. (2019b). "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst Mech., 8(3),247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  45. Fenjan, RM, Ahmed RA, Faleh, N.M. (2019a), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircr. Spacecr. Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  46. Fu, Y., Wang, J., Mao, Y., (2012), "Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment", Appl. Math. Model. 36, 4324-4340. https://doi.org/10.1016/j.apm.2011.11.059.
  47. Ghiasian, S.E., Kiani, Y., Eslami, M.R. (2013), "Dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001.
  48. Ghiasian, S.E., Kiani, Y., Eslami, M.R. (2015), "Nonlinear thermal dynamic buckling of FGM beams", European J. Mech. , 54, 232-242. https://doi.org/10.1016/j.euromechsol.2015.07.004.
  49. Giunta, G., Crisafulli, D., Belouettar, S., Carrera, E. (2013), "A thermo-mechanical analysis of functionally graded beams via hierarchical modeling", Compos. Struct., 95(1), 676-90. https://doi.org/10.1016/j.compstruct.2012.08.013.
  50. Gul, U., Aydogdu, M., Karacam, F. (2019), "Dynamics of a functionally graded Timoshenko beam considering new spectrums", Compos. Struct., 207, 273-291. https://doi.org/10.1016/j.compstruct.2018.09.021.
  51. Hebbar, N., Bourada, M., Sekkal, M., Tounsi A., and. Mahmoud, S.R. (2018), "A novel four-unknown quasi-3D shear deformation theory for functionally graded plates", Steel Compos. Struct., 27(5), 599-611. https://doi.org/10.12989/scs.2018.27.5.599.
  52. Hussain, M., Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  53. Hussain, M., Naeem, M.N., Tounsi, A., Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  54. Kaddari, M., Kaci, A., Bousahla, A.A.,Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  55. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  56. Karami, B., Janghorban, M., Tounsi, A. (2019a), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  57. Karami, B., Janghorban, M., Tounsi, A. (2019c), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazilian Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  58. Khorasani, M., Eyvazian, A., Karbon, M., Tounsi, A., Lampani, L., Sebaey, T.A. (2020), "Magneto-Electro-Elastic Vibration Analysis of Modified Couple Stress-Based Three-Layered Micro Rectangular Plates Exposed to Multi-Physical Fields Considering the Flexoelectricity Effects", Smart Struct. Syst., (Accepted).
  59. Lal, A.,Jagtap, K.R., Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Design, 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  60. Malikan, M. (2018), "Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory", J. Appl. Comput. Mech., 4(1), 1-15. https://doi.org/10.22055/jacm.2017.21820.1117.
  61. Malikan, M. (2019), "On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory", J. Appl. Comput. Mech., 5(1), 103-112. https://doi.org/10.22055/jacm.2018.25507.1274
  62. Mantari, J.L., Yarasca, J. (2015), "A simple and accurate generalized shear deformation theory for beams", Compo. struc., 134, 593-601. https://doi.org/10.1016/j.compstruct.2015.08.073.
  63. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Adda Bedia, E. A., Tounsi, A., Mahmoud, S.R., Tounsi, A., Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8.
  64. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  65. Mehar, K. and Panda, S. (2018c), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerospace Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237.
  66. Mehar, K. and Panda, S. (2018d), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  67. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V., Tompe, U.K. (2018c), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  68. Mehar, K., Mishra, P.K., Panda, S.K. (2019b), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., (In press). https://doi.org/10.1080/15376494.2020.1725193.
  69. Mehar, K., Panda, S.K. (2018a), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
  70. Mehar, K., Panda, S.K. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polymer Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
  71. Mehar, K., Panda, S.K. (2019a), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B. Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.
  72. Mehar, K., Panda, S.K. (2019b), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  73. Mehar, K., Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mech, 231, 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.
  74. Mehar, K., Panda, S.K., Devarajan, Y., Choubey, G. (2019a), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 240, 112064. https://doi.org/10.1016/j.compstruct.2019.03.002.
  75. Mehar, K., Panda, S.K., Mahapatra, T.R. (2018a), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-27370. https://doi.org/ 10.24200/sci.2017.4525.
  76. Mehar, K., Panda, S.K., Mahapatra, T.R. (2018d), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.
  77. Mehar, K., Panda, S.K., Mahapatra, T.R. (2019c), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192.
  78. Mehar, K., Panda, S.K., Patle, B.K. (2018b), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polymer Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  79. Mehar, K., Panda, S.K., Sharma, N. (2020), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.
  80. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bousahla., A.A., Mahmoud, S.R. (2019), "Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions", J. Sandwich Struct. Mater., (In press). https://doi.org/10.1177/1099636219851281.
  81. Narwariya, M.,Choudhury, A., Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Design, 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
  82. Nguyen, T.K. and Nguyen B. D., (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandwich Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237.
  83. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidiscipline Modeling Mater. Struct., 14(2), 322-338. 10.1108/MMMS-08-2017-0082.
  84. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.
  85. Panjehpour, M., Eric Woo Kee Loh, Deepak TJ. (2018), "Structural Insulated Panels: State-of-the-Art", Trends in Civil Eng. Architecture, 3(1) 336-340. 10.32474/TCEIA.2018.03.000151.
  86. Pradhan, K. K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh- Ritz method", Compos. Part B Eng, 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.
  87. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
  88. Ramteke, P.M., Panda, S.K., Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.
  89. Ranjan, S., Khan, R., Dash, S., Sharma, N., Mahapatra, T.R., Panda, S.K. (2019), "Thermo-elastic free vibration analysis of functionally graded flat panel with temperature gradient along thickness", IOP Conference Series: Materials Science and Engineering, 577(1), 012123. https://doi.org/10.1088/1757-899X/577/1/012123.
  90. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4).
  91. Rezaiee-Pajand, M., Masoodi, A.R.,Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Design, 3(2), 165-190. https://doi.org/10.12989/acd.2018...165.
  92. Sahla, F., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  93. Sahu, P., Sharma, N., Panda, S.K. (2020a), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos. Struct. 241, 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
  94. Sahu, P., Sharma, N., Panda, S.K. (2020b), "Numerical eigen-frequencies of hybrid fiber composite curved shell panels", Materials Today: Proceedings, (In press). https://doi.org/10.1016/j.matpr.2020.02.473.
  95. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A., Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  96. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  97. Semmah, A., Heireche, H., Bousahla, A.A., Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  98. Sharma, N., Mahapatra, T.R., Panda, S.K. (2018a), "Analysis of vibro-acoustic response of un-baffled laminated composite conical shell panel with varying thickness", IOP Conference Series: Mater. Sci. Eng., 377(1), 012139. https://doi.org/10.1088/1757-899X/377/1/012139.
  99. Sharma, N., Mahapatra, T.R., Panda, S.K., Mazumdar, A. (2018b), "Acoustic radiation characteristics of un-baffled laminated composite conical shell panels", Materials Today: Proceedings, 5(11), 24387-24396. https://doi.org/10.1016/j.matpr.2018.10.234.
  100. Sharma, N., Mahapatra, T.R., Panda, S.K., Mehar, K. (2018c), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629.
  101. Simsek, M., (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  102. Singh, V.K., Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mehar, K. (2019), "Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Sciences, 233(5), 1601-1619. https://doi.org/10.1177/0954406218774362.
  103. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U., Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
  104. Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407. https://doi.org/10.1007/s42452-020-2182-9.
  105. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A., Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  106. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A., Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  107. Ying, J., Lu, C.F., Chen, W.Q., (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84, 209-219. 10.1016/j.compstruct.2007.07.004.
  108. Zaoui, F.Z., Ouinas, D., Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  109. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F., Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  110. Zenkour, A. M., Sobhy, M., (2013), "Dynamic bending response of thermoelastic functionally graded plates resting on elastic foundations", Aerosp. Sci. Technol., 29(1), 7-17. https://doi.org/10.1016/j.ast.2013.01.003.

Cited by

  1. Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215