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ABSTRACT. Let H(D) be the space of all holomorphic functions on the open unit disc D

in the complex plane C. In this paper, we investigate the boundedness and compactness
of the generalized integration operator

1(1)(2) = / T (p()g() de, e D,

between Bloch-type and weighted Dirichlet-type spaces, where ¢ is a holomorphic self-map
of D,n € Nand g € H(D).

1. Introduction

Let D be the open unit disc in the complex plane C and H (D) be the space of
all holomorphic functions on D. For « € (0, 00), the a-Bloch space B¢ is the space
of all f € H(D) satisfying

[ fl|Be = sup(1 — |2[*)*[f(z)| < oc.
zeD

These are collectively referred to as Bloch-type spaces. The little Bloch-type space
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B§ consists of those functions f € B for which

lim (1 - [2?)°[f/(2)] = 0.

|z]—1

The space B“ is a Banach space with the norm

1= 17O + [[fllpe,

and Bf is a closed subspace of B*.
For p € (0,00) and 8 > —1, Ag denotes the space of all f € H(D) for which

B
1
191y = [ 1P (o 7 ) d4G) < o,
B D ||
where dA denotes the normalized Lebesgue area measure on ID. The space Ag is
called the weighted Bergman space. The weighted Bergman space Ag is a Banach
space for p > 1 and a Hilbert space for p = 2. It is well-known that f € AZ if and
only if

/le(z)l”(l —2?)? dA(z) < .

For p € (0,00) and 8 > —1, the weighted Dirichlet-type space DZ is the space of all
functions f € H(D) for which

B
151, = [ 17 (e ) dace) <o
P D ||
We note that f € Dj if and only if f € Aj.
Let u be a holomorphic function on D and ¢ a nonconstant holomorphic self-
map of D. The weighted composition operator uC,, induced by u and ¢ is defined
on H(D) as follows:

uCy,(f) = ufop.
Putting v = 1, uC, reduces to the composition operator C,. For general background
on composition operators, we refer to [3, 14] and for weighted composition operators
acting on Bloch-type spaces and Dirichlet-type spaces we refer for example to [2, 5,
13, 18].
In this paper, we consider an integration operator I éﬁp) which is defined on H(D) by

10)(£)(2) = / T (0(©)g(€) dE, 2 €D,

where ¢ is a holomorphic self-map of D, n € N and g € H(D).

This operator, which was introduced in [15], is called the generalized integration
operator. It is a generalization of the Riemann-Stieltjes operator I, induced by g,
defined by

1,f(2) = / FHOd(Ode, s eD.
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Y. Yu and Y. Liu in [20] characterized the boundedness and compactness of
Riemann-Stieltjes operator I, from weighted Bloch spaces into Bergman-type
spaces. The essential norm of the integral operator I, on some spaces of holo-
morphic functions was studied by L. Liu, Z. Lou and C. Xiong in [10].

The operator Ié(,fg induces some known operators. For example, when n = 1,
Iéfl), reduces to an integration operator recently studied by S. Li and S. Stevic in
[6, 7, 8]. Taking n =1 and g(z) = ¢'(2), we obtain the composition operator C,

defined by Co, f = f(¢) = f(¢(0)), f € H(D).
Recently, S. D. Sharma and A. Sharma in [15] characterized the boundedness

and compactness of generalized integration operator I, 5’3 from Bloch-type spaces to
weighted BMOA.

The boundedness and compactness of Riemann-Stieltjes operators from mixed
norm spaces to Zygmund-type spaces on the unit ball was studied by Y. Liu and
Y. Yu in [11]. X. Zhu in [24] investigated the boundedness and compactness of
generalized integration operators from H to Zygmund-type spaces. Z. He and G.
Cao in [4] investigated the boundedness and compactness of generalized integration
operators between Bloch-type spaces and F(p, ¢, s) spaces. For related integral-type
operators on unit disc and also in C", see for example [1, 9, 16]. Motivated by the
above results, in this article we give an equivalent conditions for the boundedness
and compactness of the generalized integration operator Iéfg between the Bloch-
type and weighted Dirichlet-type spaces.

The notation a =< b means that there exists a positive constant C' such that
a < Cb. If both a < b and b < a occur, then a ~ b.

2. Boundednes and Compactness of the Operator Iéfg : B — 'Dg

In this section we characterize the boundedness and compactness of the gener-
alized integration operator Igﬁg from the Bloch-type space B* into Dirichlet-type
space D).

Let « > 0. From [12] it follows that there are two holomorphic functions
f1, f2 € B® such that

C
AP = 1G]+ 1f2(2), 2 €D,

where C ia a positive constant.
If we define hi(z) = fi(z) — 2f1(0) and ha(z) = fa(z) — 2f5(0), using the
following relation from [22],

(L= )@+ O] ~ A= 12 (2)],

it can be shown that hy, ho € B* and

C
A < WY () + |h3(2)], 2 €D.
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By repeating the above method, we have the following:

Lemma 2.1.([4, 23]) Let oo > 0 and n € N. There ezist two holomorphic functions
hi,hs € B* such that

C

W < |h§n)(z)| + |hén)(z)‘, z €D,

where C' is a positive constant.
For achieving the boundedness of I_E,?} : B — D} we need to the following
result from [23]:

Lemma 2.2. Let o >0 and n € N. If f € B*, then

1fllBe ) 0<axl
1f@) <c{ Wfllpedn =z a=1
(RO o>1
and
|f(n)(z)| < CHf”B“

(1= [zt
where C' is a positive constant.

Theorem 2.3. Let g € H(D), n € N, ¢ be a holomorphic self-map of D, 0 < a,p <
oo and B > —1. Then the following statements are equivalent:

(i) Igﬁg : B — DY is bounded.
(i) 107 : Bg —> DY is bounded.

(iii)

B i o 1 ’ z) < 00
M= /]D) (1- \¢(z)‘2)p(a+nf1) (1 g |z|) dA(z) < oo.

Proof. (i) = (ii) is trivial, since B§ C B*.

(ii) = (iii). First, note that if h € B*, then by defining hs as hs(z) = h(sz)
for every z € D and s € (0, 1), hs € Bf and ||hs[|se < |[|h]|sa. By Lemma 2.1, there
are two holomorphic functions hq, hy € B such that the following inequality holds:

C

W < W ()| + [h" ()], zeD.

(2.1)
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So, by (2.1),

[sg(=)I” RN
/]D (1 — |sp(z)[2)Pletn=D <10g |Z|) dA(z)

<cf \h&’;)(so(z)))ﬂsg(z)w (10s ) a4
+c/ ’h(”) \sg( )P <10g |i|>ﬁ dA(2)

<c (Hfg?:z<h18>|| 22y )

for every s € (0,1). Since boundedness of I_E,TB . B§ — Dj implies that
||I(n)(hls)|| , < oo and ||Igf2(h23)H%g < 00, so, by an application of Fatou’s

- |9(Z)|p o ’ z 00
M= /]D) (1- ‘(p(z)|2)P(O¢+n—1) <1 S E |) dA(z) <

(iii) = (i). From Lemma 2.2 we have

Lemma,

[ f]l 5o

(1= [z

(2.2) 7| <

for every f € B. This implies that

11211, = [ |76 s (1og|i|)ﬁ 2A(2)

, 9@ e 1Y s
<C|flI Q/D(l_|(p(z)|2)p(a+n—1) (1 ) |z> dA(2)

— M| | < .

Therefore, I\") : Bo —» D7 is bounded. O

Now, we investigate the compactness of I 5(,?2 : B — ZD’/;. For this investigation

we need to the following Lemma which can be found for example in [17].

Lemma 2.4. Let X and Y be Banach spaces of holomorphic functions on D.
Suppose that

(i) The point evaluation functions on X are continuous.

(ii) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.
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(iii) T: X — Y is continuous when X and'Y are given the topology of uniform
convergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence {f,} in X
such that f, — 0 uniformly on compact sets, then the sequence {Tf,} converges
to zero in the norm of Y.

For X =B%and Y = ®Z’v the above Lemma can be applied. So it follows that:

Lemma 2.5. Let T : B — DZB’ be a bounded operator. Then, T is compact if
and only if given a bounded sequence {f,} in B* such that f, — 0 uniformly on
compact sets, then the sequence {T f,} converges to zero in the norm of Dg.

By the following result we characterize the compactness of IE(,Z}Z B — Dg.

Theorem 2.6. Let g € H(D), n € N, ¢ be a holomorphic self-map of D, 0 < a,p <
oo and B > —1. Then the following statements are equivalent:

(i) Igﬁg : B* — DY is compact.
(i) 10" : Bg —> DY is compact.

)
(iii) Igﬁg : B§ — DY is weakly compact.
)

- lo(z)P 0 S ’ z 00
23) M= /D (1- ‘@(Z)‘Q)P(OHrnfl) (1 g |z|) dA(z) < oo,
and
(2.4) lim lg(2)I” (10g 1>B dA(z) = 0.
t—s1 lo(2)|>t (1 — |(p(z)|2)p(a+nfl) |Z‘

Proof. (i) = (ii) is trivial.

(ii) < (iii). Clearly, Ig(ff,) : B — D is weakly compact if and only if its
adjoint, i.e. (Ié(,f;)) : (Dg) — (Bg)" is weakly compact. According to [21],
(B§)" = Aj. Since A} satisfies in the Schur property, (I_(STB) : (Dg) — (B3)"
is compact. Thus IJ") : BY —» DY is compact.

(iii) = (iv). Assume that LS”} : B§ — Dj is (weakly) compact. Then

k

Theorem 2.3 implies that (2.3) holds. Let fy(z) = 7=+ for k € N and z € D. Then
{fr} € B is a norm bounded sequence and fr — 0 as k — oo for every k € N
on any compact subset of D. Thus, by Lemma 2.5, we have

(25) I§ fill o, = 0.

lim |
k—> 00
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Hence, for every € > 0 there is an N such that for every k£ > N,

(2. hm(’“?‘l) Leertlgero (7 |) dA(z) < e

Thus, for each 7 € (0,1),

@0 () [ o () o <

If we choose r > (((]A\[, ")) ) e N~ 7%, then we have

(2.8) /¢<z>|>r lg(2)|? <log é)ﬁ dA(z) < ¢

Let f € Bgg, where Bgo is the unit ball of Bf. The compactness of Iéfg :
By — Dg implies that for every ¢ > 0, there exists r € (0,1) such that

’ <log P |) dA(z) < e

’ (log ;)B dA(z)

(150r - ft>) (= )p(log1>6 dA(2)

2|

' <1og|i|)ﬁ 4A(2)

(29) (20 -m) @

where fi(z) = f(t ) zeD.
So, (2.8) and (2.9) imply that

nd
/ (z)|>r

< c /
)|>r

e /
le(2)|>r

(02r) @)

(Igt:z<ft>)' (=)

7 p 1 B
(M (¢, _ A
< of |mo-m)ef (o) o
(n) P 1)’
e 1)l (e ) aac)
e (2)[>r K
< Ce+ Cesup|f™(2)|P
z€D
= Ce(1+suwplf™M(2)P),
z€D

where C' is a positive constant. Thus, for every f € Bga and every € > 0, there is
ad=204(f,e) (depended on f and €) such that for every r € [9,1) we have

(2.10) /|¢<z>|>r <log - l)ﬁ dA(z) < ¢

(1) )
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The compactness of Igg : B — D leads that I_(Sﬁg (Bsg) is a relatively
compact subset of Dg. Hence, for every € > 0 there exists a finite family of functions

fi,---, fn € Bgg such that for every f € Bgg, ||I!§f2 - IéfgfiHng <eforice

{1,...,N}. ie.,
’ <log B |>5 dA(z) <e

(2.11) /D

Hence, putting 6 = max 6(fi,€), for any f € Bpo we have

(212) /Iso(Z)>T ( Wfl) )

ifrefd,1).
Applying (2.12) to functions (f;)s(z) = fi(sz) for i = 1,2 (the functions are as
in Lemma 2.1), we obtain

|sg(2)[” ) .
/Iv(z)>r (1- |S<’D(z)|2)17(06+n 1) (1 g| |) dA(z)

< cf e s (s )
lo(2)|>r

(1520 - 1) )

B
1
<log |z|> dA(z) < Ce,

e 75 s0(2)| Isa(2) P (1og1) 4A(2)
lo(2)[>r ||
¢ OFRY (1 ) dA
< T /( (152 110) (=) o8 (2)
C / P 1 B
S ) fo (1 ) dA
+||f25||%8 /|¢(z)|>r ( oo f2 ) (z)| | log B (2)
< Ckg,

for all r € [0,1). By Fatou’s Lemma, this estimate implies (2.4).

(iv) = (i). Let {fx} be a bounded sequence in B* converges to zero on compact
subsets of D as k — oo. Cauchy’s estimate implies that for any n € N| {fk )} also
converges to zero on compact subset of D as K — oo. In particular

(2.13) lim sup

k—>o00 Jw|<r

1 )| =o.
By hypothesis, for every € > 0 there is r € (0,1) such that,

lg(=)I” ’
(2.14) /|W(Z)>T (1- |¢(Z)|2)p(a+n71) (log E |> dA(z) <e
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Taking the function f(z) = 2™, boundedness of Igg implies that

(2.15) L= /D lg(2)|P (log |i|>ﬁ dA(z) < o0

So, using Lemma 2.2 and relations (2.14) and (2.15),

(log;l)ﬁ 4A(:)

,E.”)«o(z))]” 9(2)IP (1og 1|)B dA(:)

”I(n)ka@P _/‘ I(n (2)

~/|<P(Z)<r

- /7'<|‘P(Z)|<1 ‘f,gn)(go(z))‘p |g(z)|p <log é)ﬂ dA(Z)

n p
<L s |F ()] + Cellfulfpa
le(z)|<r

Letting K — oo and using (2.13), we conclude that ||I( kaDp — 0. Thus,
by Lemma 2.5, I$") : B> —» D7 is compact. O

3. Boundednes and Compactness of the Operator Iéfg : 'Df,_; — B

In this section we study the boundedness and compactness of the generalized
integration operator I3} : DP —» B,
For every a € D the holomorphic mapping from D onto D is defined by o, (z) =

Lemma 3.1.([19]) Let 8 > —1, 0 < p < oo and f € Aj. Then

FEN Q- 12P) (1+ﬁ /\f (- 12%)” dA(Z)>Ii z €D,

with equality if and only if f is a constant multiple of the function f,(z) =

248

(—oa(2)) 7
We recall the following fundamental lemma from [21]:

Lemma 3.2.([21, Lemma 4.2.2]) Suppose z € D, ¢ is real, t > —1 and

Li(2) = / A=),

p |1 — zw|?Ftte

(a) If ¢ <0, then as a function of z, I..(z) is bounded on D.
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(b) If ¢ >0, then

1 _
Ic7t(2) ~ m, |Z| — 1.
(¢) If c=0, then
1 _
IO,t(Z) ~ log m, |Z| — 1 .
Let 0 < p < oo, > —1and f € Aj. Then
1 £1l.az
(3.1) )] € ——
(1|25

for z € D ([21]). Also, for f € A} and 2 € D, we have

— |w|? p w
(32) £ = 6+1) [ (1<1_l£)2f§ L arw),

See 4.2.1 of [21]. Differentiating under the integral sign n times, we obtain a constant
K,, > 0 such that

(3.3) K/ 1_21Lw7|l+2+5*”f( ) dA(w).

Lemma 3.3. Let0 <p< oo, 8>—-1, meNand f € .Ag, Then there exists a
constant C' > 0 such that

1 laz

B
L=z

(3.4) [f™() < C

Proof. By (3.1), (3.3) and setting t = § — # in Lemma 3.2, we have

1— w m
< g [ & 'w'}|2+m+ﬂ'|f< )| dAw)

— |w]?) [1f1l.az
<K, / dw i  dA(w)
1 - 2wl (1 Jwf?)™

(1—|w?)’
= Knllflay [ T )

1 £1la

_ Vs
(1— |25 Fm

~ Ky
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So, there exists a constant C' such that

£ 14z

Fm () < c—2
(1 |o2) 55

Theorem 3.4. Let g € H(D), n € N and ¢ be a holomorphic self-map of D,
0<a,p<ooand > —1. Then the following statements are equivalent:

(i) Iéfg : D — B is bounded.

(35) 0 — sup L= ) 19(2)

< 00.
&+n71
€D (1 — |p(2)]?) »

Proof. (ii) = (i). Let f € DJ. Then f’ € A} and from Lemma 3.3, there is a
constant C' > 0 such that

!
1/ lLaz, o 1fllpr

(=[5 T (=) 5

36 /M@= e <
for z € D. By (3.6),

= sup (1 — |z|2)a ’f(n)(SO(Z))’ l9(2)]

z€D
1—|2*)" lg(=)|
S Osup ( ) &-{-n—l
€D (1 —[p(2)?)
< CM]|f]»2.

sup (1= :)° |(14221) =

zeD

1 llos

Hence, I\") : Df — B is bounded.
(i) => (ii). Assume that (i) holds. Taking the function f(z) = Z;, the bound-

edness of I, éﬁz implies that

(3.7) L= ilelg (1 — |z|2)a lg(2)| < oo.

Define the functions f, for every a € D as follows:

fa(z) = /0 ((11_;52) - dw.

Then Lemma 3.1 implies that f, € D} and||fa|\93§ ~ 1. The boundedness of
5 DY — B implies that there exists a constant C' > 0 such that 118 £l e <

529
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C||fa||®g < C. Also, it is easy to see that for any n € N and z € D,

B+2
cni1a” (1—al?) 7
(3.8) FED(z) = 1-a )2(/3+2) P
—az) »
where ¢, 11 = H;;lo(@ -+ m). Since
B+2
(1—1al?) *
falz) = W,
—az) @

so, f!(z) follows from (3.8) by letting n =0 and ¢; = 1.
Since Iéﬁgfa(O) =0, letting a = ¢(z) and using (3.8),

F50 (0(2))

19(2)]

= 1—z]?)"
sup (1~ |=[%)

Jo enle I 1 - e(2)?) "

2612 4y

= sup (1 — [z l9(2)]

(1 - le(2)]?)
. enle(2)[" (1 fﬁlflj)“ l9(2)]
(1— lp(z)[2) > T

This shows that

(3.9) qup [P (- %) g _

EES I
€D (1= p(z)]?) 7 "
For any 4,0 < § < 1, by (3.9),

(1= [21)" lg(2)|

sup < 00
le(2)1>8 (1 — |p(2)|2) > 7!

For z € D such that |¢(z)| < §, we have

(L= 12" Mg (= 12°)" lg()

(3.10) 77— < " -
(1= lp(a)) 54 T (1 - gy 5

Hence, from (3.7) and (3.10), we have

sup (1= 121)" lg(2) .

e(2)1<8 (1 — |p(2)|2) 7 !
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So,
(L 1=F)" 19(2)
€D (1— |p(2)]?) 7 7
Thus, (3.5) holds and the proof of the theorem is completed. |

Now, we investigate the compactness of [, éﬁg : @g — B>, We use the following
lemma which can be obtained from 2.4 by taking X = Dg and Y = B~.

Lemma 3.5. Let T : Dg — B be a bounded operator. Then, T is compact if
and only if given a bounded sequence {f,} in @IB’ such that f, — 0 uniformly on
compact sets, then the sequence {T f,} converges to zero in the norm of B*.

Theorem 3.6. Let ¢ € H(D), n € N, ¢ be a holomorphic self-map of D, 0 <
a,p<ooand > —1. If |¢llec <1 and Ifgfg : DY — B is bounded, Then 1522 is
compact.

Proof. Since I, éﬁg : D’é — B< is bounded, Theorem 3.4 implies that

Y L Y0

< 00.
B2 n 1
2D (1 —p(2)?) »

Let {fx} be a bounded sequence in the unit ball of D} that converges to 0
uniformly on compact subsets of D as K — oo. Then, Cauchy’s estimate implies
that { f,g")} for n € N also converges uniformly to 0 on compact subset of D as
k — oo. This implies that,

lim  sup ’f,g")(w)‘:o.
k—)oowep(]]))

So,
!/
152l = sup (1 1) [ (15220 2
= sup (1= =) | /{V(4(2))| lo(2)
z€D
< M sup ‘f,gn)(w(z))‘ — 0 ask— oo.
zeD

Hence, by Lemma 3.5, Igﬁg : Dy — B is compact. O

Theorem 3.7. Let g € H(D), n € N, ¢ be a holomorphic self-map of D, 0 < a,p <
oo and B> —1. If ||¢llec = 1, then the following statements are equivalent:

(i) Ig:g : D — B is compact.
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(ii) Ig(,ffg : Dy — B is bounded and

(3.11) lim (- |Z|2)aﬁ|fz(2)| 1
I (1= (o))

Proof. (i) = (ii). Suppose that I(fg : D — B* is compact. Obviously, it is

bounded. We consider the function f, for a € D defined as in Theorem 3.4. This
function converges to zero uniformly on compact subsets of D as |a| — 1.

Now, pick the sequence {z,,} C I such that |¢(z,,)| — 1 as m — oo. Using
the test function f,,(2) = f,(.,.)(2), we obtain

« n !
15l = s (1= 1) (122m) )

= sup (1 [2f*)" [ £ (002 ()

= sup (1= )" |42, (22D =)

B+2

[o(zm)[™ (1 = [@(zm)[?)

oo
(1 — @(2m)p(2m) !

|n—1

> (1 - ‘Zm|2)a

lp(2m)

> (1 - |zm[*)”
(1= [p(zm)2) 7 71

l9(2m)l-

As we mentioned above, since f,,, = f,(.,.) converges to zero uniformly on com-

pact subsets of D as | (2, )| — 1, from Lemma 3.5 it follows that HIg(ffgmega —0
as |p(zm)| — 1 and so, (3.11) holds.

(ii) = (i). Let {fx} be a bounded sequence in the unit ball of Dj; that converges
to 0 uniformly on compact subsets of D as k¥ — oo. The relation (3.11) implies
that for every € > 0 there is a 6 € (0, 1) such that

(312 wp  LZED I

(z<le@)I<1} (1 — [p(2)[2) % ™"

Also, the uniform convergence of {f;} on compact subset of I together with

Cauchy’s estimate, implies that { fkn)} for n € N converges to 0 on compact subset
of D as kK — oo. This implies that

(3.13) lim sup ’f,g")(w)’ = 0.

k— 00 |w| <8
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Then, by (3.6), (3.7) and (3.12) we get the following:
!/
152l =sup (1 1) |(1220) 2
z€D
" (e(2)|lg(2)]

()] lg(2)

= sup (1 — |z|2)a
z€D

= sup (1 — \z|2)a
lo(2)|<8

+  sup (1 - |z\2)a
5<]p(z)|<1

5 (w)|

1 ()] lg(2)]

< L sup
|w|<é

(1= 1=1)" L9 (2)|
+ Clfrllpy ~ sup BE2 ., 1
s<lel@I<t (1 [p(2)) 7

<L swp |f" ()] + Cell fillog-
le(2)<8

Letting & — oo and using (3.13), it folloes that ||I§f2fk\|3a — 0. Thus,

Lemma, 3.5 implies that I_E,TB : D — B is compact. a
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