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ABSTRACT. In this paper, we introduce the geometry of contact C'R submanifolds and
radical transversal lightlike submanifolds of Sasaki-like almost contact manifolds with B-
metric. We obtain some new results that establish a relationship between these two sub-
manifolds.

1. Introduction

Bejancu [1] initiated the study of C'R-submanifolds with Kaehler manifolds.
Yano and Kon [10] introduced the concept of odd dimensional manifolds called the
contact C'R submanifolds of a Sasakian manifold. They proved some basic results
for contact C'R submanifolds of a Sasakian manifold with definite metric. Fur-
ther, Matsumoto [8] studied such manifolds and obtained some fundamental results.
Ganchev et al. [6] introduced the geometry of almost contact B metric manifolds
which are a natural extension, to the odd dimensional case, of the geometry of the
almost complex manifolds with B-metric.

Duggal and Sahin [5] defined and studied lightlike submanifolds of indefinite
Sasakian manifolds and introduced radical tranversal lightlike submanifolds of in-
definite Sasakian manifolds. Recently, Nakova [9] studied submanifolds of almost
complex manifolds with Norden metric which are non-degenerate with respect to
one Norden metric and lightlike with respect to other Norden metric on the manifold
and introduced radical transversal lightlike submanifold of almost complex mani-
folds with the Norden metric. Ivanov et al[7] defined Sasaki-like almost contact
Complex Riemannian manifolds that resemble with the Sasakian manifold and thus
motivated us to study such manifolds.
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In this paper, we study the geometry of contact C'R submanifolds and radical
transversal lightlike submanifolds of Sasaki-like almost contact manifold with B-
metric. We investigate conditions for the integrability of distributions of contact
C R-submanifolds and radical transversal lightlike submanifolds of Sasaki like almost
contact manifold with B-metric. We find the necessary and sufficient condition for
integrability of screen distribution of radical transversal lightlike submanifold with
B-metric. Further, we obtain some new results that establish relationship between
the concerned geometric objects of both the submanifolds of Sasaki-like almost
contact manifold with B-metric. Finally, we prove that for a contact C R-product
submanifold of Sasaki like almost contact manifold with B-metric, the induced con-
nection V of radical transversal lightlike submanifold with Norden metric is a metric
connection.

2. Almost Contact Manifold with B-metric

Let (M?2"+1 ¢, ¢, n) be an almost contact manifold with B-metric [6], that is,
let (¢, ¢,n) be an almost contact structure consisting of a tensor field ¢ of type (1, 1)
a vector field ¢, a 1-form 1 and a metric § on M satisfying the following algebraic
conditions for arbitrary vector fields X and Y on M:

(2.1) Q*(X)=-X+n(X)¢, n(¢)=1, ¢(=0, no¢=0.

(2.2) 9(pX,Y) = —g(X,Y) + n(X)n(Y),

The following identities are valid for an almost contact manifold with B-metric.
(2.3) n(X) =g(X,0), g(¢X,Y) = g(X,Y).

The associated metric § of g on M defined by
(24) 9(XY) = g(eX,Y) +n(X)n(Y),

is also a B-metric on M and the manifold (M, ¢,(,n,q) is also called an almost
contact manifold with B-metric. Both the metrics g and § are indefinite of signature
(n+1,n).

Let V and V be the Levi-Civita connection of § and § respectively. The tensor
field F' of type (0,3) is defined on M by

F(X,Y,Z) = §((Vx)Y,Z)
and the following general properties hold [6]:

F(X,Y,Z)=F(X,Z,Y)
(2.5) F(X,¢Y,0Z) = F(X,Y,Z) +n(Y)F(X,(, Z) + n(Z)F (X, Y, (),
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for any X,Y, Z € TM. The relations of F with V¢ and V7 are given by :

(26) (Vxn)Y =g(Vx(Y)=F(X,9Y,(), n(Vx() =0, ¢(Vxp){=Vx(

Let {e;, ¢}, (i =1,2,.....,2n) be a basis of T,,, M and (g*/) be the inverse matrix
of gi; then for X € T, M, the following 1-forms are associated with F':

(27) 0(X) =g F(ei, e, X), 0°(X)=g"F(ei, e, X), w(X)=F(C¢X),
Using above equation, we have
w(¢) =0 0%(pX) = —0(o*X) — w(X).
The Nijenhuis tensor N of the almost complex structure is defined by
(2.8) N = [p, ¢l +dn®,

N(X,Y) =@’ [X,Y] + [0X, Y] — ¢[pX,Y] — ¢[X,pY] + dn @ (.

An almost contact structure (¢, ¢,n) is said to be normal if and only if Nijenhuis
tensor denoted by N vanishes [2] and such manifold (M, ¢, (, 7, §) is called normal
almost contact manifold.

In [6] Ganchev et al. defined eleven basic classes F;(i = 1,2,....11) of almost
contact manifolds with B-metric and gave a classification of almost contact mani-
folds with B-metric with respect to tensor F. The special class Fy defined by the
condition F(X,Y, Z) = 0 belongs to everyone of the basic classes. Throughout this
paper, we will consider the class Fjp.

Definition 2.1.([7]) An almost contact manifold (M, p,(,n,g) with B- metric is
Sasaki-like if the structure tensors , (,n, g satisfy the following equalities

(2.9) F(X,Y,Z)=F((,Y,2)=F((,(,Z) =0,

(2.10) F(X,Y,¢) = —g(X,Y).
Also, the covariant derivative V¢ satisfies the following equality

(2.11) (Vx@)V = —g(X,Y)¢ —n(Y)X + 2n(X)n(Y)¢

In this paper, we refer to these manifolds as indefinite Sasaki-like almost contact
manifolds with B-metric.

3.Contact C' R-submanifolds of Sasaki-like Almost Contact Manifolds with
B-metric

In this section, we define and study contact C R-submanifolds of Sasaki-like al-
most contact manifolds with B-metric and investigate their integrability conditions.
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Definition 3.1. A submanifold (M, g) of a (2n + 1)-dimensional Sasaki-like almost

contact manifold with B-metric M with structure tensors (¢, ¢,n) is called a contact
C R-submanifold if there exists a differentiable distribution D : x — D, € T, M
and the complementary orthogonal distribution D+ : # — D+ C T,M on M
which satisfies the following conditions:

(i) ¢eD,
(ii) @D, C T, M for each x € M,
(iii) DL C T, M+ for each point = € M.

The complementary orthogonal distribution of @D+ in TM+* is denoted by 7. The
tangent bundle TM of M has the following decomposition

TM =TM1TM* =TM1eD* 17 =D1Dt1oD 17

Let E and G be the projection morphisms of TM on the distributions D and D+
respectively, then for any X € T M, we can write

(3.1) X =EX+GX,
where EX € D and GX € D+. Applying ¢ to (3.1), we get
pX =HX+ KX,

where pEX = HX € D and ¢oGX = KX € oD are the tangential and the normal
components of X, respectively.
Similarly for any V € TM~, we have

eV =tV + fV,

where tV and fV are the tangential and the normal parts of @V, respectively.

Let V and V be the Levi-Civita connections of g and g on M and M, respec-
tively. Then the Gauss and Weingarten formulae for M are given by

(3.2) VxY =VxY +h(X,Y),
(3.3) VxV =-AyX + DxV,

for any vector fields X,Y € TM and V € TM~*, where h is the second fundamental
form of M, Ay is the shape operator of M with respect to V and D is the normal
connection on TM~+ which is a metric linear connection. Since ¢ € TM, we have,
for any vector field X € T M,

(3.4) Vx(=¢X =Vx(+h(X,(),
and on equating the components of pX, we get

(3.5) VyC=HX, KX=h(X,0).
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Let E; and E5 be the projection morphisms of TM~* on D+ and 7, respec-
tively. Then (3.2) and (3.3) can be written as

(3.6) VxY =VxY +h'(X,Y)+Rr*X,Y), VxV=-AyX + DYV + D%V,
where

RY(X,Y) = Ei(h(X,Y)), R3(X,Y) = Ey(h(X,Y)),
DYV = Ey(DxV), D%V = Ey(DxV).
It should be noted that D! and D? are not linear connections on TM~+ but are

Otsuki connections with respect to the vector bundle morphisms F; and E5 respec-
tively. Thus the above equation (3.6) reduces to

(3.7) VxY =VxY +h(X,Y) + h%(X,Y),
VxN = —AyX + VXN + D*(X,N),
VxW = —AwX + DY (X, W) + Vi W,
where VXN = DY N and VAW = D% W are metric connections on @D+ and

7, respectively and DY(X, W) = DLW and D?*(X,N) = D% N are F(M) bilinear
mappings. Making use of equations (3.7) to (3.9), we have

(3.10) g(h'(X,Y),N) = g(Y, AN X),
(3.11) g(h*(X,Y), W) = (¥, Aw X),
(3.12) §(D*(X,N),W) = —g(D'(X,W), N).

Lemma 3.1. Let (M, g) be a contact CR-submanifold of an indefinite Sasaki-like
almost contact manifold (M, p,(,n,g) with B-metric. Then we have

(3.13) (VxH)Y = Ay X +th*(X,Y) = g(X,Y)¢ = n(Y)X +2n(Y)n(X)¢,
(3.14) (VLK)Y = —h' (X, HY),
(3.15) D*X,KY) = fh*(X,Y) - h*(X,HY),

where

(VxH)Y =VxHY — HVxY,
(3.16) (VKK)Y = VL KY — KVxY,

forany X, Y € TM.

Proof. Since M is a Sasaki-like almost contact manifold with B-metric,

VxeY = o(VxY) + (Vxp)Y,
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for any X,Y € TM, and using (3.7) and (3.8), we obtain
VxHY + (X, HY)+h*(X,HY) — Agy X + VY KY + D*(X,KY)
(3.17) = HVxY + KVxY +th'(X,Y) + fh*(X,Y)
—9(X,Y)¢ = n(Y)X 4 2n(Y)n(X)C.
Considering the tangential, (D), and 7 components, respectively, of the above
equation, the lemma follows. O

Lemma 3.2. Let (M, g) be a contact C R-submanifold of a Sasaki-like almost con-
tact manifold (M, p,(,n,g) with B-metric. Then we have

(3.18) (VYN = —HANX + Asn X,
(3.19) hY(X,tN) = ~FANX — V& fN,
(3.21) ~AjwX = HAw X +tD' (X, W),
(3.22) DY(X, fW) = KAw X,
(3.23) VAW = fVEW,
for any X,Y € TM, N € oD+ and W € .
Proof. Let N € ¢ D+ then we have VxtN = ¢V xN. By using (3.7) and (3.8), we
obtain
VxtN + h'(X,tN) 4+ h*(X,tN)
= p(~AnX + VXN + D*(X,N))
= —HANX — KANX +tVYN + fD*(X, N).
Comparing the tangential components, we get (V)N = —HANX + A;n X, where
(VLt)N = VxtN — tVL N and comparing ¢ D+ and 7 components, the relations
(3.19) and (3.20) follows respectively.
Next, let W € m and making use of (3.9) we have
—Apw X + VAW + DY (X, fW) = ¢(—Aw X + VAW + D' (X, W))
= —HAwX — KAwX + fV4W +tD' (X, W).
Comparing the tangential, 9D+ and 7 components of above equation the relations
(3.21), (3.22) and (3.23) follows respectively. Thus the proof is completed. O

Theorem 3.3. Let (M, g) be a contact CR-submanifold of a Sasaki-like almost
contact manifold (M, p,(,n,g) with B-metric. Then VYK = 0 if and only if V1t =
0.

Proof. Let V1K = 0. Using (3.14), we have h!(X, HY) = 0. Now taking the inner
product with respect to N € @D+ and using relation (3.10), we get

gHY, AnX) = g(h' (X, HY),N) =0,
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which implies AyX € D+, that is, HAyX = 0. Next, by making use of relation
(3.18), we have V1t = 0. The converse follows similarly. a

Lemma 3.4. Let (M, g) be a contact CR-submanifold of a Sasaki-like almost con-
tact manifold (M, p,(,n,g) with B-metric. Then we have

(3.24) AowZ = Ayz W,
and
(3.25) VyoW — VieZ € oD,

for any Z,W € D+.

Proof. Since M is a Sasaki-like almost contact manifold with B-metric, we have, for
any Z,W € D+, VoW = oV W. Taking inner products with U € 7, we obtain
g(SDU7 vZI/V) = g(Ua leSOW)a

which implies
§(U, VoW = VigpZ) = 9(ApzW,U) = g(Aow Z,U) = 0.
Thus, the proof is completed. a

Lemma 3.5. Let (M, g) be a contact CR-submanifold of a Sasaki-like almost con-
tact manifold (M, ¢,(,n,g) with B-metric. Then the anti-invariant distribution D=+
18 integrable.

Proof. For any Z,W on D, making use of relation (3.24) yields
P2, W] = (V2W = VwZ) = (VoW = ViypZ) + (D*(Z, W) - D* (W, ¢Z)).
By virtue of relation (3.15), we have
D*(Z,oW) = fh*(Z, W)
and
PlZ, W] = VoW — ViypZ
thus the assertion follows using relation (3.25). O

Lemma 3.6. Let (M, g) be a contact C R-submanifold of a Sasaki-like almost con-
tact manifold (M, ¢, (,n,§) with B-metric. Then the distribution D is integrable if
and only if W' (X, ¢Y) = hX(Y,pX).

Proof. For any X,Y on D and taking into consideration the relations (3.14)
and (3.15) infers that KVxY = h'(X,pY). Further for any Z on Dt yields
G(KVxY,pZ) = g(h'(X,¢Y),pZ) which implies g(VxY,Z) = g(h*(X, Y ), pZ).
It follows that g([X,Y], Z) = g(h* (X, Y ),0Z) — g(h' (Y, pX), pZ). Thus, making
use of the non-degenerate property of ¢(D=), the result follows. m|
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Like a contact CR-submanifold of a Sasakian manifold, a contact CR-
submanifold of a Sasaki-like almost contact manifold with B-metric is known as
contact CR-product if it is locally a product of M"' and M?, where M' and M? are
the leaf of the distribution D @ ¢ and D~ respectively.

Theorem 3.7. Let (M,g) be a contact CR-submanifold of a Sasaki-like almost
contact manifold (M, ¢, (,n,g) with B-metric. Then (M, g) is a contact C R-product
if and only if

(3.26) ApxZ =n(X)Z,
VX € Dt and Z € D.

Proof. Proof is similar with that of Theorem 6.1 of [8]. O

Theorem 3.8. Let (M, g) be a contact C'R-submanifold of a Sasaki-like almost
contact manifold (M, p,(,n,g) with B-metric. Then the following assertions are
equivalent :

(i) D' is a metric Otsuki connection on TM*.

(i) DYX,W) =0 for any X € TM and W € .
(iii) D?(X,N) =0 for any X € TM and N € ¢D*.
(iv) D? is a metric Otsuki connection on TM*.

Proof. Since V! and V? are metric connections on (T M) and T, respectively and
making use of relation (3.12) we have

g(Dl(XvN)aNl) = *g(DQ(XVNv/)vN) =0,
g(Dl(X7 W)’W/) = _g(DQ(X’ W/)’W) =0,

thus, the assertions (i), (ii), (iii) and (iv) are equivalent. O

4. Lightlike Submanifold of a Sasaki-like Almost Contact Manifold with
B-metric

Consider an m-dimensional submanifold (M, g) immersed in a real (m + n)-
dimensional semi-Riemannian manifold (M, g) of constant index g such that m,n >
1,1 <q¢<m+n—1and let g be the induced metric of g on M. Then M is called
a lightlike submanifold of M if § is a degenerate metric on the tangent bundle
TM of M. For a degenerate metric g on M, TM~ is a degenerate n-dimensional
subspace of T, M. Thus both T, M and T, M~ are no longer complementary but
degenerate orthogonal subspaces of TM. So, there exists a subspace called radical
or null subspace, that is,

Rad(T,M) =T,M NT,M*.
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Further, if the mapping Rad(TM) : © € M — RadT,.M, defines a smooth
distribution of rank r > 0 on M then the submanifold M is called an r-lightlike
submanifold of Mand Rad(T M) is known as the radical distribution on M. A semi-
Riemannian complementary distribution S(TM) of Rad(TM) in TM is a screen
distribution. We have

TM = Rad(TM)LS(TM)

and that S(TM™') is a complementary vector subbundle to Rad(TM) in TM*.
Let tr(T'M) and ltr(T'M) be complementary (but not orthogonal) vector bundles
to TM in TM |j and to Rad(TM) in S(T M=)+ respectively. Then, we have

tr(TM) = ltr(TM) LS(TM™").

TM |pyy=TM @ tr(TM) = (Rad(TM) & ltr(TM)) LS(TM)LS(TM™).
For a quasi-orthonormal fields of frames of M along M, we have the following.

Theorem 4.1.([4]) Let (M, g,S(TM),S(TM*)) be an r-lightlike submanifold of
a semi-Riemannian manifold (M,g). Then there exists a complementary vector
bundle ltr(TM) of Rad(TM) in S(TM*)L and a basis of ltr(TM) |y consisting
of smooth section {N,} of S(TM=*)* |, where U is a coordinate neighbourhood of

M, such that
g(Navgb) :5ab7 g(Na,Nb) :Oa fO’/‘ any a,bE {1,2,..,7"},

where {&1,...,&} is a lightlike basis of Rad(TM).

Let (M, g) be an r-lightlike submanifold of a Sasaki-like almost contact manifold
with B metric(M, ¢, g, g). Let V be the Levi-Civita connection of the metric § on
M and V be the induced connection on M then Gauss and Weingarten formulae
are given by

VxY =VxY +h(X,Y), VxV=-AyX+VLV,

for arbitrary X, Y € TM and V' € tr(TM), where {VxY, Ay X} and {h(X,Y), V4 V}
belong to TM and tr(TM), respectively and V and V' are linear connections on
TM and tr(TM), respectively. Moreover, V is torsion-free linear connection, h
is a tr(TM)-valued symmetric F(M)-bilinear form on TM and A is a T M-valued
F(M)-bilinear form on tr(TM) x (T'M). In general, V and V* are not metric con-
nections. Let L and S be the projection morphisms of ¢tr(T'M) on ltr(TM) and

S(TM l)7 respectively then

(4.1) VxY = VxY +h(X,Y) + h(X,Y),
(4.2) VxV =—AyX + DYV + Dy V.
where

DLV = L(V4V); D%V = S(ViV).
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Besides D' and D* do not define linear connections on ¢r(T'M) but they are Otsuki
connections on tr(T'M) with respect to L and S, respectively. Therefore (4.1) and
(4.2) become

(4.3) VxY = VxY +h(X,Y) + h*(X,Y),
(4.4) VxN = —AyX + V4L N + D*(X, N),
(4.5) VxW = —Aw X + DY (X, W) + VW,

where V! and V* are defined by V4, N = DL N and VW = D5 W are metric

linear connections on Itr(TM) and S(TM™1), respectively. D! and D* are defined
by D'(X,W) = DxW and D*(X,N) = D% N are F(M)-bilinear mappings. Using

(4.3) — —(4.5) and taking into account that V is a metric connection, we obtain
g(h*(X,Y), W) + (v, D'(X,W)) = §(AwX,Y),
g(D* (X, N), )—§(AWX N),
GANX, N') +9(AN'X N) =
VXY, N) +§(Y, Vi N) = g(ANx, Y).
(4.6) g (X, Y),€) +§(Y,h'(X,€)) + 3(Y, Vx€)) = 0.

Let P’ be the projection morphism of TM on S(TM) then new induced geometric
objects on the screen distribution S(T'M) are given as below.

(4.7) VxP'Y =V5PY +h*(X,PY), Vxt{=-AX+V¥

for any X, Y € TM and € € Rad(TM), where {V P'Y, At X} and {h*(X, P'Y), V¥¢}
belong to S(T'M) and Rad(T M), respectively. V* and V** are linear connections
on complementary distributions S(TM) and Rad(TM), respectively. h* and A*
are Rad(TM)-valued and S(TM)-valued bilinear forms and they are called as the
second fundamental forms of distributions S(T'M) and Rad(T M), respectively, for
any X, Y € TM, ¢ € Rad(TM) and N € ltr(TM).

From the geometry of Riemannian submanifolds, it is known that on a non
degenerate submanifold the induced connection V is a metric connection. But un-
fortunately, this is not true incase of a lightlike submanifold. Indeed, considering
V a metric connection, we have

(ng)(Ya Z) = g(hl(X7 Y)’ Z) +g(hl(Xa Z),Y),

for any XY, Z € TM.

In [11], Sahin defined radical transversal lightlike submanifolds for an indefinite
Sasakian manifold. In this paper, we define radical transversal lightlike submanifold
of a Sasaki-like almost contact manifold with B-metric as follows.
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Definition 4.2. Let (M,3,S(T'M),S(I'M)*) be a lightlike submanifold of a
Sasaki-like almost contact manifold with B-metric (M, ,3,3). Then M is a radical
transversal lightlike submanifold of M if

(4.8) ©(RadT M) = ltr(TM),
(4.9) o(S(TM)) =S(TM).

It is important to note that for an indefinite Sasakian manifold [11] there do not
exist any 1-lightlike radical transversal lightlike submanifolds. But for a Sasaki-like
almost contact manifold with B-metric there exists an 1-lightlike radical transversal
lighlike submanifold.

Lemma 4.3. There exists an 1-lightlike radical transversal lighlike submanifold
(M, g) of a Sasaki-like almost contact manifold with B-metric (M, ¢, §,g).

Proof. Let us suppose that (M,g) be an 1-lightlike radical transversal lighlike
submanifold of a Sasaki-like almost contact manifold with B-metric (M, o, g, §).
Then we have, Rad(TM) = span( and ltr(TM) = spanN. Using the definition of
Sasaki-like almost contact manifold, we have,

3(0¢, ¢) = =g(0°¢, ¢) + n(eC)n(¢) = §(¢, ) # 0.

Let N € ['(ltr(TM)), then using(4.8), we have g(¢¢,¢) = §(N,() = 1, Thus, we
conclude that there exists an 1-lightlike radical transversal lighlike submanifold of
a Sasaki-like almost contact manifold with B-metric. o

Theorem 4.4. Let (M, g) be a radical lightlike submanifold of a Sasaki-like almost
contact manifold with B-metric (M, ¢,1,(,g,3). Then the induced metric connec-

tion V on M is a metric connection if and only if A,y X has no component in
S(TM) for X e TM andY € Rad(TM).

Proof. We know that the necessary and sufficient condition for an induced con-
nection to be a metric connection is that for any X € TM and Y € Rad(T'M),
VxY € Rad(TM). Suppose V is a metric connection on M then for any
Z € S(TM) and making use of (4.1), we have

F(VxY,Z)=0.
By making use of (2.2) yields

_5(@6)(}/7 @Z) + 777(%XY)77(Z) =0
I(Vxp)Y = VxpY),pZ) =0

Next to it, using (4.4), the proof is completed. O

545
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5. Relations between Contact C' R-submanifold and Radical Transversal
Lightlike Submanifold of a Sasaki-like Almost Contact Manifold with B-
metric

Since there are two B-metrics on an indefinite almost contact manifold M with
B-metric, there are two corresponding induced metrics on the submanifold M of M.
Hence M is either non-degenerate (degenerate) with respect to both the induced
metrics or degenerate with respect to one and non-degenerate with respect to other.
In [9], Nakova studied the case when the submanifold (M, g) is non-degenerate and
(M, g) is a degenerate submanifold of M. In particular, Nakova proved the following
theorem for an almost complex manifold with a Norden metric.

Theorem 5.1.(]9]) Let (M, J,g,3) be a 2n-dimensional almost complex manifold
with a Norden metric and M be an m-dimensional submanifold of M. The subman-
ifold (M, g) is a C R-submanifold with an r-dimensional totally real distribution D+
if and only if (M, §) is an r-lightlike radical transversal lightlike submanifold of M.

Thus, in this case, the tangent bundle T'M of M has the following decomposi-
tion.

TM = S(TM)1S(TM*Y)1(Rad(TM)&ltr(TM)),

where S(TM) = D, RadTM = D+, S(TMJ-) = (pD4)t and itrTM = ¢D*. For
a Sasaki-like almost contact manifold with B-metric, we have

VxY =VyY, VxV =VyY,

R(X,Y) = h'(X,Y), R (X,Y) = h*(X,Y),
(5.1) AnX = AnX, Aw X = Aw X,
VYN = VLN, SW =vViw

DY(X,W) = DY(X, W), D*(X,N) = D*(X,N),

We have verify the above result for a Sasaki-like almost contact manifold with B-
metric and the proof is same as above theorem if we consider that ¢ € S(TM)
[3]-

Theorem 5.2. Let (M, g) be a submanifold of a Sasaki-like almost contact manifold
with B-metric (M,¢,n,(,3,3). Then the submanifold (M,g) is a contact CR-
submanifold with an r-dimensional totally real distribution if and only if (M, §) is
an r-lightlike contact radical transversal lightlike submanifold of M.

Theorem 5.3. Let (M, g) be a radical transversal lightlike submanifold of a Sasaki-
like almost contact manifold with B-metric (M, ,n,(,g,g). Then the radical dis-
tribution of (M, g) is integrable.
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Proof. Let &1,&5 € T'(Rad(TM)) and X € T'(S(T'M)) then we have

I(Vebo, X) = —g(péa, Ve, X)
= §(Ve, 92, X)
= —Q(Acp§2§1,X)-
Hence B _
I(Verbo = Vb1, X) = §(Ape, & — Apes&1, X).
Since ¢1,& € T'(D4) = I'(Rad(TM)), using (3.24) we obtain §([&1,&],X) = 0
which implies that [£1,&s] € T'(Rad(TM)). Hence the result follows. O

Theorem 5.4. Let (M,¢,n,(,3,7) be a Sasaki-like almost contact manifold with
B-metric and (M, g) be a contact CR submanifold of M. Then the invariant dis-
tribution D of contact C R-submanifold (M, g) is integrable if and only if the screen
distribution S(T M) of radical transversal lightlike submanifold (M, §) is integrable.

Proof. Let X,Y € S(TM) and N € ltr(T'M) then

and hence §([X,Y],N) = g(h'(X, oY) — h*(Y,9X), N). Thus the assertion follows
using Lemma 3.6. O

Theorem 5.5. Let (M,g) be a contact CR-submanifold of a Sasaki-like almost
contact manifold with B-metric (M,p,1,¢(,3,3). Then the induced connection \Y
on the radical transversal lightlike submanifold (M, §) is a metric connection if and
only if (M, g) is a contact CR-product.

Proof. Let (M,g) be a contact C'R-submanifold of a Sasaki-like almost contact
manifold with B-metric then using (3.7), (3.8) and (3.18), we have

—Ay,zX +VioZ + D*(X,02) = —g(X, Z)¢ —n(X)Z + 20(Z)n(X )¢
=o(VxZ +h'(X,Z) + h3(X,Z))

Comparing the tangential parts, we have
OVxZ = Az X —n(X)Z.
Taking inner product with Y € Rad(TM) and using (2.3) we have

J(@VXZY)=g(ApzX —n(X)Z)Y)
= g(ApzX —n(X)Z,0Y) +n(ApzX —n(X)Z)n(Y)

Using Theorem 3.7. we have VxZ € Rad(TM ) and hence, the induced connection
V is a metric connection on (M, g). a
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Theorem 5.6. Let (M, g) be a contact C R-submanifold of a of a Sasaki-like almost
contact manifold with B-metric (M, p,n,¢,§,9). If K is parallel, that is, V1K =
0 then the screen distribution S(TM) of radical transversal lightlike submanifold
(M, g) is a parallel distribution with respect to V and h* vanishes identically on
lightlike submanifold (M, g).

Proof. Let K be parallel then using (3.14), we get h'(X, HY) = 0 and using this
in (3.10), we obtain g(¢Y, AxyX) =0, for any X,Y € TM. Further using (2.2) and

(4.4), we obtain §(Y, Ay X) = 0, implies Ay is I'(Rad(TM))-valued operator. Thus
from Theorem 2.6 on page 162 of [4], the assertion follows. O

Theorem 5.7. Let (M, g) be a contact CR-submanifold of of a Sasaki-like almost
contact manifold with B-metric (M,¢,1,(,§,3). If (VYt)N = 0 then the screen
distribution S(TM) of radical transversal lightlike submanifold (M, §) is a parallel
distribution with respect to V and h* vanishes identically on lightlike submanifold

(M, g).
Proof. Using the hypothesis in (3.18), we get HAyX = 0 implies Ay X € D™, for
any X € TM. Therefore for any Y € D,
g(HY, AnX) = g(0Y, AnX) = 0.
The rest of the proof is similar to that of above Theorem. O

Theorem 5.8. Let (M,g) be a contact CR-submanifold of of a Sasaki-like al-
most contact manifold with B-metric (M, p,n,(,§,§). then the radical distribu-
tion Rad(TM) of radical transversal lightlike submanifold (M, §g) is integrable and
the shape operator Az of the screen distribution of (M, §) vanishes identically on
Rad(TM), for any & € Rad(TM).

Proof. We know that for a contact C'R-submanifold of of a Sasaki-like almost con-
tact manifold with B-metric (M, @,n,¢, 3, ), the totally real distribution D+ is
always integrable. Therefore for any X € D and Z,Z’ € D+, we have

0=9([2,2",¢X) = §(VzpZ' . X) — §g(V 202, X)
= —g(pZ',h* (X, 2)) + g(pZ,h* (X, Z")).

Since X € D, we obtain, using (2.2),

(5.2) 9(z' W (HX,Z)) - 3(Z,h'(HX, Z')) = 0.

Now replace ¢ by Z and Y by Z’ in (3.19), where Z, Z’ € T(D+) = Rad(TM), we
get

(5.3) g(Z' WHX,Z)+ 3(Z,h(HX,Z") = 0.

Adding (5.2) and (5.3), we obtain g(Z’, h'(HX, Z)) = 0 consequently h!(HX,Z) =
0. Thus by virtue of Theorem 2.7 on page 162 of [4], the assertion follows. O
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