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Abstract. The object of the present paper is to characterize generalized Ricci recurrent

(GR4) spacetimes. Among others things, it is proved that a conformally flat GR4 spacetime

is a perfect fluid spacetime. We also prove that a GR4 spacetime with a Codazzi type

Ricci tensor is a generalized Robertson Walker spacetime with Einstein fiber. We further

show that in a GR4 spacetime with constant scalar curvature the energy momentum tensor

is semisymmetric. Further, we obtain several corollaries. Finally, we cite some examples

which are sufficient to demonstrate that the GR4 spacetime is non-empty and a GR4

spacetime is not a trivial case.

1. Introduction

The basic difference between the Riemannian and semi-Riemannian geometry
is the existence of a null vector, that is, a vector v satisfying g(v, v) = 0, where
g is the metric tensor. The signature of the metric g of a Riemannian manifold
is (+,+,+, ...+,+,+) and of a semi-Riemannian manifold is (−,−,−, ...+,+,+).
Lorentzian manifold is a special case of semi-Riemannian manifold. The signature of
the metric of a Lorentzian manifold is (−,+,+, ...+,+,+). In a Lorentzian manifold
three types of vectors exist such as timelike, spacelike and null vector. In general,
a Lorentzian manifold (M, g) may not have a globally timelike vector field. If
(M, g) admits a globally timelike vector field, it is called time orientable Lorentzian
manifold, physically known as spacetime. The foundations of general relativity are
based on a 4-dimensional spacetime manifold.

Let (M, g) be an n-dimensional Lorentzian manifold with the Lorentzian metric
g. A Lorentzian manifold is said to be recurrent [41] if at a point x ∈M, there exists
a 1-form A on some neighbourhood of x such that ∇XR = A(X)R, where R denotes
the curvature tensor of type (1, 3) and ∇ denotes the covariant differentiation with
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respect to X. In 1952, Patterson [33] introduced the notion of Ricci recurrent
manifolds. A Lorentzian manifold (M, g) of dimension n is said to be Ricci recurrent
if its Ricci tensor S satisfies the condition

(∇XS)(Y,Z) = B(X)S(Y,Z),

where B is a non-zero 1-form. He denotes such a manifold by Rn. Ricci recurrent
manifolds have been studied by several authors.

In 1995, De, Guha and Kamilya [11] introduced the notion of generalized Ricci
recurrent manifolds. A non-flat Riemannian manifold is called generalized Ricci
recurrent realizing the following relation

(1.1) (∇XS)(Y, Z) = A(X)S(Y,Z) +B(X)g(Y,Z),

where A and B are two non-zero 1-forms, called associated 1-forms. Such a manifold
is denoted by GRn. If the 1-form B vanishes, then the manifold reduces to a Ricci
recurrent manifold Rn. This justifies the name generalized Ricci recurrent manifolds
and the symbol GRn for it. A Lorentzian manifold (M, g) of dimension n ≥ 4 is
named generalized Ricci recurrent spacetimes if the relation (1.1) holds.

To characterize generalized Ricci recurrent (GR4) spacetimes we assume that
the associated vector fields U , V corresponding to the 1-forms A, B respectively
are timelike vector fields. In a recent paper [21] Mallick, De and De studied gener-
alized Ricci recurrent manifolds with applications to relativity. In the same paper
the authors constructed two examples of GRn. Also Generalized Ricci recurrent
manifolds have been studied by several authors.

A Riemannian or a semi-Riemannian manifold is said to be semisymmetric [40]
if its curvature tensor R satisfies the condition

R(X,Y ) ·R = 0,

for all X, Y ∈ χ(M), where R(X,Y ) acts as a derivation on the curvature tensor
R. Trivial examples of semisymmetric spaces are locally symmetric spaces and all
two-dimensional Riemannian spaces. But a semisymmetric space is not necessarily
locally symmetric. A fundamental study on such manifolds was made by Szabo [40].
In this connection we can mention the book of Boeckx, Kowalski and Vanhecke [3]
and the References there in.
Also, a Riemannian or a semi-Riemannian manifold is said to be Ricci semisym-
metric [31] if the Ricci tensor S of type (0,2) satisfies the condition

R(X,Y ) · S = 0,

for all X, Y ∈ χ(M).
On the other hand, generalized Robertson-Walker (GRW) spacetimes were in-

troduced in 1995 by Alias, Romero and Sánchez [1, 2].
A Lorentzian manifold M of dimension n ≥ 3 is named generalized Robertson-

Walker (GRW) spacetime if it is the warped product M = I ×q2 M∗ with base
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(I,−dt2), warping function q and the fibre (M∗, g∗) is an (n-1)-dimensional Rie-
mannian manifold [1, 2, 8, 35, 36].

If M∗ is a 3-dimensional Riemannian manifold of constant curvature, the space-
time is called a Robertson-Walker (RW ) spacetime. Therefore, GRW spacetimes
are a wide generalization of RW spacetimes on which standard cosmology is mod-
elled. They include the Einstein-de Sitter spacetime, the static Einstein spacetime,
the Friedman cosmological models, the de Sitter spacetime and hence applications
as inhomogeneous spacetimes admitting an isotropic radiation [8, 35].

Lorentzian manifolds with Ricci tensor of the form

(1.2) S(X,Y ) = αg(X,Y ) + βA(X)A(Y ),

where α, β are scalar fields and U is a unit timelike vector field corresponding to the
1-form A(that is, g(U,U) = −1), are called perfect fluid spacetimes and are of in-
terest in general relativity. In differential geometry they are named quasi Einstein.
Semi-Riemannian quasi Einstein spaces arose in the study of exact solutions of Ein-
stein’s field equations and in the investigation of quasi-umbilical hypersurfaces of
Pseudo-Euclidean spaces [12, 13]. Form (1.2) of the Ricci tensor is implied by Ein-
stein’s equation if the energymomentum tensor of the spacetime is perfect fluid with
velocity vector field U. A spacetime is called perfect fluid if the energymomentum
tensor is of the form

T (X,Y ) = (µ+ p)A(X)A(Y ) + pg(X,Y ),

where µ is the energy density, p is the isotropic pressure, U is a unit timelike vector
field (g(U,U) = −1) metrically equivalent to the 1-form A. The fluid is called perfect
because of the absence of heat conduction terms and stress terms corresponding to
viscosity [19].

In addition, p and µ are related by an equation of state governing the particular
sort of perfect fluid under consideration. In general, this is an equation of the form
p = p(µ, T0), where T0 is the absolute temparature. However, we shall only be
concerned with situations in which T0 is effectively constant so that the equation
of state reduces to p = p(µ). In this case, the perfect fluid is called isentropic[19].
Moreover, if p = µ, then the perfect fluid is termed as stiff matter(see [39] , page
66). Einstein’s field equation is given by S(X,Y ) − r

2g(X,Y ) = κT (X,Y ), κ is
the gravitational constant. Einstein’s equation implies that matter determines the
geometry of spacetime and conversly, the motion of matter is determined by the
metric of the space which is non-flat.

The conformal curvature tensor is defined by [34]:

C(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ]

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ],(1.3)
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where R is the curvature tensor of type (1, 3), S is the Ricci tensor of type (0, 2),
Q is the Ricci operator given by g(QX,Y ) = S(X,Y ) and r denotes the scalar
curvature.

Perfect fluid spacetimes in four dimensions with divergence free conformal cur-
vature tensor (that is, divC = 0) were firstly investigated by Shepley and Taub [38]
and successively by Sharma [37] and Coley [9].

Recently in [27] Mantica, Molinari and De extended some results to n-
dimensional perfect fluids and proved the following:

Theorem 1.1.([27]) Let (M, g) be a perfect fluid spacetime, that is, the Ricci tensor
is of the form Rij = αgij + βuiuj. If ∇kuj = ∇juk and ∇hChijk = 0, then

(i) ui is a concircular vector field and it is rescalable to a timelike vector Xj such
that ∇kXj = ρgjk,

(ii) (M, g) is a GRW spacetime with Einstein fiber,

(iii) The velocity vector annihilates the Weyl tensor, that is, uhC
h
ijk = 0.

Recently, De et al. [14, 15] studied conformally flat almost pseudo-Ricci sym-
metric spacetimes and spacetimes with semisymmetric energy momentum tensor
respectively. Also in [23] Mallick, Suh and De studied spacetime with pseudo-
projective curvature tensor. Also several authors studied spacetimes in different
way such as [16, 22, 29] and many others. In [7] Chaki and Ray studied spacetimes
with covariant constant energy momentum tensor.

Motivated by the above studies in the present paper we characterize generalized
Ricci recurrent spacetimes GR4. At first we determine the nature of the associated
1-forms of GR4 spacetimes. Next in Section 3, we consider conformally flat GR4

spacetimes with an additional restriction and prove that such a spacetime is a
perfect fluid spacetime. As a consequence we obtain several corollaries. Section
4 is devoted to study GR4 spacetimes with Codazzi type of Ricci tensor. In this
section we prove that a GR4 spacetime with Codazzi type of Ricci tensor is a GRW
spacetime with Einstein fibre. Also state equation is obtained. In Section 5, it is
shown that in a GR4 spacetime with closed associated 1-forms the energymomentum
tensor is semisymmetric and Weyl compatible. Finally, we give some examples of
generalized Ricci recurrent spacetimes.

2. Nature of the Associated 1-forms of GR4 Spacetimes

Putting Y = Z = ei in (1.1), where {ei} is an orthonormal basis of the tangent
space at each point of the manifold and taking summation over i, 1 ≤ i ≤ 4, we get

(2.1) dr(X) = rA(X) + 4B(X),

where r =
∑4
i=1 εiS(ei, ei), ε = g(ei, ei), from which one obtains

d2r(X,Y ) = r(∇YA)X +A(X){rA(Y ) + 4B(Y )}
+4(∇YB)X.(2.2)
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Interchanging X and Y in (2.2) and then subtracting we infer that

r[(∇YA)X − (∇XA)Y ] + 4{(∇YB)X − (∇XB)Y

+A(X)B(Y )−A(Y )B(X)} = 0.(2.3)

Suppose the vector fields U and V corresponding to the 1-forms A and B re-
spectively are collinear. Then it follows at once from (2.3) that the 1-form A is
closed if and only if B is closed.

However if r = constant, then from (2.1) we obtain that the 1-form A is closed
if and only if B is closed. If r = 0, then from (2.1) we arrive at a contradiction.
Therefore in a GR4 the scalar curvature is non-zero.

From the above discussions we can state the following:

Proposition 2.1. If the associated vector fields of a GR4 spacetime are collinear
or the scalar curvature is constant, then the associated 1-form A is closed if and
only if B is closed. Also the scalar curvature is non-zero in a GR4 spacetime.

3. Conformally Flat GR4 Spacetimes

In this section we characterize conformally flat GR4 spacetimes. In the paper
[21] the authors proved the following:

Theorem 3.1.([21]) A conformally flat GRn is a quasi Einstein manifold provided
the associated vector fields are collinear.

It is to be noted that the basic geometric features of GR4 spacetimes are also
being maintained in the Lorentzian manifold which is necessarily a semi-Riemannian
manifold. Hence all the results of GRn Riemannian manifold are true in GR4

spacetime. Only the form of the Ricci tensor will be changed, because in the
spacetime the associated vector field corresponding to the 1-form A is assumed
to be a unit timelike vector, that is, g(U,U) = −1. In the paper [21] the authors
obtained the form of the Ricci tensor as

(3.1) S(X,Y ) =
r − λ(n− 2)

2(n− 1)
g(X,Y ) +

(n− 2)(r + λn)

2(n− 1)g(U,U)
A(X)A(Y ),

where λ is a scalar defined by B(X) = λA(X).
In the GR4 spacetime we take U as a unit timelike vector field, that is, g(U,U) =

−1. Hence (3.1) reduces to

(3.2) S(X,Y ) =
r − 2λ

6
g(X,Y )− (r + 4λ)

3
A(X)A(Y ),

which implies that the spacetime is a perfect fluid spacetime.
Thus we obtain the following:

Proposition 3.2. A conformally flat generalized Ricci recurrent spacetime is a
perfect fluid spacetime, provided the associated vector fields are collinear.
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Einstein’s field equation without cosmological constant is given by

(3.3) S(X,Y )− r

2
g(X,Y ) = κT (X,Y ),

being κ the Einstein’s gravitational constant, T is the energymomentum tensor
([39], [32]) describing the matter content of the spacetime.

From (3.2) and (3.3) we obtain

(3.4) κT (X,Y ) = −r + λ

3
g(X,Y )− r + 4λ

3
A(X)A(Y ),

where A is a non-zero 1-form such that A(X) = g(X,U), for all X and U is a unit
timelike vector field.
Equation (3.4) is of the form of a perfect fluid spacetime

T (X,Y ) = (p+ µ)A(X)A(Y ) + pg(X,Y ),

where κp = − r+λ3 and κ(p+ µ) = − r+4λ
3 from which it follows that p = − r+λ3κ and

µ = −λκ , p being the isotropic pressure and µ the energy density.
Therefore the state equation is p = 1

3 (µ− r
κ ). But in a generalized Ricci recur-

rent spacetime the scalar curvature is non-zero. Thus the state equation indicates
that the fluid spacetime is not radiative due to the presence of r and κ. Moreover,
the values of p and µ are in accordance with the present day observations.

4. GR4 Spacetimes with Codazzi Type of Ricci Tensor

The Ricci tensor is said to be Codazzi type [17] if (∇XS)(Y, Z) = (∇ZS)(X,Y ).
Codazzi type of Ricci tensor implies by Bianchi’s 2nd identity that the scalar cur-
vature r is constant. Mallick, De and De [21] proved

Theorem 4.1.([21]) A GRn with Codazzi type of Ricci tensor is a quasi Einstein
manifold whose Ricci tensor is of the form

(4.1) S(X,Y ) = −s
t
g(X,Y ) +

r

nt
A(X)A(Y ),

where t = g(U,U) and s = g(U, V ).

Since we consider the associated vector field U as a unit timelike vector, the
equation (4.1) can be rewritten as

(4.2) S(X,Y ) = sg(X,Y )− r

4
A(X)A(Y ),

which implies that the spacetime is a perfect fluid. Thus we get the following:

Proposition 4.2. A GR4 spacetime with Codazzi type of Ricci tensor is a perfect
fluid spacetime.
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In an n-dimensional Lorentzian manifold, we know [24] that,

divC =
n− 3

n− 2
[(∇XS)(Y,Z)− (∇ZS)(X,Y )− 1

2(n− 1)
{g(Y,Z)dr(X)

−g(X,Y )dr(Z)}].(4.3)

Therefore if the Ricci tensor is of Codazzi type, then from (4.3) it follows that
divC = 0, that is, the Weyl conformal curvature tensor is divergence free.

Lemma 4.3. Let (M, g) be a perfect fluid spacetime, that is, S(X,Y ) = αg(X,Y )+
βA(X)A(Y ), where the vector field U metrically equivalent to the 1-form A is a unit
timelike vector field and β 6= 0. If div C = 0 and dr(X) = 0, then the 1-form A is
closed.

Proof. The divergence of the conformal curvature tensor is given by (4.3). Therefore
the conditions div C = 0 and dr(X) = 0, imply (∇XS)(Y,Z) = (∇Y S)(X,Z). From
S(X,Y ) = αg(X,Y ) + βA(X)A(Y ), by taking a frame field and contracting X and
Y , we get r = 4α− β, so that 4(Xα) = (Xβ).
Now taking covariant derivative of the Ricci tensor and using 4(Xα) = (Xβ) from
(∇XS)(Y,Z) = (∇Y S)(X,Z) we infer that

1

4
(Xβ)g(Y,Z) + (Xβ)A(Y )A(Z) + β[(∇XA)(Y )A(Z) +A(Y )(∇XA)(Z)]

=
1

4
(Y β)g(X,Z) + (Y β)A(X)A(Z) + β[(∇YA)(X)A(Z)

+A(X)(∇YA)(Z)].(4.4)

Taking a frame field and contracting over Y and Z we obtain from the above
equation

(4.5) (Xβ) + 4(Uβ)A(X) + 4β[(∇UA)(X) +A(X)(∇eiA)(ei)] = 0,

where {ei} is an orthonormal basis of the tangent space at each point of the manifold.
Now putting X = Y = U in (4.4) yields

(4.6) 2Xβ = 4(Uβ)A(X)− 4β(∇UA)(X).

Using (4.6) in (4.5) we get

4βA(X)(∇eiA)(ei) = Xβ.

Again putting X = U in (4.5) it follows that

(4.7) 3(Uβ) + 4β(∇eiA)(ei) = 0.

From (4.6) and (4.7) we infer that

(4.8) −3A(X)(Uβ) = (Xβ).
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Replacing X by U in the above equation and using A(U) = −1 gives Uβ = 0 and
hence from (4.8) we finally get Xβ = 0.
Now putting Z = U in (4.4) and using Xβ = 0 we obtain

(∇XA)(Y )− (∇YA)(X) = 0,

which implies that the 1-form A is closed. Hence the integral curves of the vector
field U are geodesic. 2

Now using the above Lemma and Theorem 1.1 of [27] we are in a position to
state the following:

Theorem 4.4. A generalized Ricci recurrent spacetime with Codazzi type of Ricci
tensor is a GRW spacetime with Einstein fiber. Also the velocity vector field U
satisfies the condition C(X,Y )U = 0.

Remark 4.5. For dimension n = 4, the condition C(X,Y )U = 0 means

A(C(X,Y )Z) = 0,

where the vector field U is metrically equivalent to the 1-form A.
The above equation implies that [20]

A(W )C(X,Y )Z +A(X)C(Y,W )Z +A(Y )C(W,X)Z = 0.

Now replacing W by U in the above expression and using C(X,Y )U = 0 yields
C(X,Y )Z = 0. It is known [4] that a GRW spacetime M is conformally flat if and
only if M is a RW spacetime. Thus in n = 4 dimension GRW spacetime reduces
to RW spacetime. Therefore a GR4 spacetime with Codazzi type of Ricci tensor is
a RW spacetime.

Since a 4-dimensional spacetime with divC = 0 and dr(X) = 0 is a Yang Pure
space [18], Theorem 4.4 can be restated as:

Corollary 4.6. Any 4-dimensional perfect fluid Yang Pure space with β 6= 0 is a
GRW spacetime with Einstein fiber.

Remark 4.7. Extensions and modifications of General Relativity have a prominent
role in addressing the problem of dark energy and dark matter (the so-called dark
side). A generalization of Einstein’s theory is the so-called f(R) theory of gravita-
tion. It was introduced by Buchdahl [5] in 1970. In [6], Capozziello et al. proved
that an n-dimensional GRW spacetime with divergence free conformal curvature
tensor exhibits a perfect fluid stress-energy tensor for any f(R) gravity model. In
Theorem 4.4 of our paper, we prove that a generalized Ricci recurrent spacetime
with Codazzi type of Ricci tensor is a GRW spacetime with Einstein fiber. Hence,
from the result of Capozziello et al., we conclude that the spacetime under con-
sideration in our paper proclaims a perfect fluid stress-energy tensor for any f(R)
gravity model.
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Now we consider Einstein’s equation without cosmological constant, that is,

(4.9) S(X,Y )− r

2
g(X,Y ) = κT (X,Y ),

being κ the Einstein’s gravitational constant, T is the energymomentum tensor
[32, 39] describing the matter content of the spacetime.

From (4.2) and (4.9) we obtain

(4.10) κT (X,Y ) = (s− r

2
)g(X,Y )− r

4
A(X)A(Y ),

where A is a non-zero 1-form such that A(X) = g(X,U), for all X and U is a unit
timelike vector field.
The above equation is of the form of a perfect fluid spacetime

T (X,Y ) = (p+ µ)A(X)A(Y ) + pg(X,Y ),

where κp = s− r
2 and κ(p+ µ) = − r4 from which it follows that p = 1

κ (s− r
2 ) and

µ = 1
κ [ r4 − s], p being the isotropic pressure and µ the energy density.

Therefore the state equation is p = −µ − r
4κ . Since by hypothesis the Ricci

tensor is of Codazzi type, therefore the scalar curvature is constant. Thus the state
equation reduces to p = −µ+ constant.

5. GR4 Spacetimes with Constant Scalar Curvature

In this section we characterize generalized Ricci recurrent spacetimes with con-
stant scalar curvature. Taking covariant derivative of (1.1) we get

(∇X∇Y S)(Z,W ) = ∇XA(Y )S(Z,W ) +A(Y )A(X)S(Z,W )

+A(Y )B(X)g(Z,W ).(5.1)

Interchanging X and Y in (5.1) we obtain

(∇Y∇XS)(Z,W ) = ∇YA(X)S(Z,W ) +A(X)A(Y )S(Z,W )

+A(X)B(Y )g(Z,W ).(5.2)

Also from (1.1) we have

(5.3) (∇[X,Y ]S)(Z,W ) = A([X,Y ])S(Z,W ) +B([X,Y ])g(Z,W ).

Now subtracting (5.2) and (5.3) from (5.1) and using Ricci identity we get

(R(X,Y ) · S)(Z,W ) = {(∇XA)Y − (∇YA)X}S(Z,W )

+{(∇XB)Y − (∇YB)X}g(Z,W ) + {A(X)B(Y )

−A(Y )B(X)}g(Z,W ).(5.4)
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From (2.3) it follows that if the scalar curvature is constant, then A(X)B(Y ) −
A(Y )B(X) = 0, since the 1-forms A and B are closed. Hence from (5.4) we infer
that

(5.5) R · S = 0.

The foregoing equation implies that in such a spacetime under consideration the
Ricci tensor is semisymmetric. Therefore from Einstein’s field equations we can
conclude that the energy momentum tensor is semisymmetric, that is,

R · T = 0.

In a recent paper [15] De et al. characterize spacetimes with semisymmetric energy
momentum tensor. Thus all the results of [15] also hold for GR4 spacetimes with
constant scalar curvature.

Equation (5.5) gives

S(R(X,Y )Z,W ) + S(Z,R(X,Y )W ) = 0.

Now summing cyclically the above equation and applying Bianchi’s first identity we
get

(5.6) S(R(X,Y )Z,W ) + S(R(Y,W )Z,X) + S(R(W,X)Z, Y ) = 0.

Any semi-Riemannian manifold satisfying (5.6) is called Riemannian compatible
[25]. Thus we have

Proposition 5.1. A GR4 spacetime with constant scalar curvature is Riemann
compatible.

Any semi-Riemannian manifold satisfying

(5.7) S(C(X,Y )Z,W ) + S(C(Y,W )Z,X) + S(C(W,X)Z, Y ) = 0

is called Weyl-compatible. Weyl-compatibility have been studied in the Riemannian
case by Mantica et al [26].

It is known that both conditions (5.6) and (5.7) are equivalent. Now if we use
Einstein’s equation in (5.7), we get

T (C(X,Y )Z,W ) + T (C(Y,W )Z,X) + T (C(W,X)Z, Y ) = 0.

Therefore we can state the following:

Proposition 5.2. In a GR4 spacetime with constant scalar curvature the energy-
momentum tensor is Weyl-compatible.
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6. Some Examples of Generalized Ricci Recurrent Spacetimes

Example 6.1.([10]) A generalized concircularly recurrent manifold with constant
scalar curvature is a GRn.

Example 6.2.([28]) A quasi-conformally recurrent manifold with divergence free
quasi-conformal curvature tensor is a GRn, provided the manifold is neither con-
formally flat nor conformally symmetric.

Example 6.3. The so called Z tensor is defined by

(6.1) Z(X,Y ) = S(X,Y )− r

n
g(X,Y ).

It may be noted that the vanishing of the Z tensor implies that the manifold to
be an Einstein manifold and hence the Z tensor is a measure of the deviation from
an Einstein manifold [30].

Z−recurrent manifold is defined by

(6.2) (∇WZ)(X,Y ) = A(W )Z(X,Y ),

where A is a non-zero 1-form. From (6.1) and (6.2) we obtain

(∇WS)(X,Y ) = A(W )S(X,Y ) +
1

n
{dr(W )−A(W )r}g(X,Y ),

which implies that the Z−recurrent manifold is a generalized Ricci recurrent man-
ifold.

Conversely, if the manifold is generalized Ricci recurrent, then

(∇WZ)(X,Y ) = (∇WS)(X,Y )− dr(W )

n
g(X,Y ),

and using (1.1) and (2.1) we get

(∇WZ)(X,Y ) = A(W )Z(X,Y ).

Hence we conclude that a Z−recurrent manifold is a GRn and conversely.

Remark 6.4. The above examples also hold for GR4 spacetimes.

Acknowledgements. The author is thankful to the Referee for his/her valuable
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[1] L. Aĺias, A. Romero and M. Sánchez, Uniqueness of complete spacelike hypersur-
faces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen.
Relativity Gravitation, 27(1)(1995), 71–84.
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