KYUNGPOOK Math. J. 60(2020), 585-597
https://doi.org/10.5666/KMJ.2020.60.3.585
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Surfaces of Revolution of Type 1 in Galilean 3-Space

Ali Çakmak*
Department of Mathematics, Faculty of Sciences and Arts, Bitlis Eren University 13000, Bitlis, Turkey
e-mail: acakmak@beu.edu.tr or alicakmak@yahoo.com
Hasan Es
Department of Mathematics Education, Faculty of Education, Gazi University 06500, Ankara, Turkey
e-mail: hasanes@gazi.edu.tr
Murat Kemal Karacan
Department of Mathematics, Faculty of Sciences and Arts, Usak University, 1 Eylul Campus 64200, Usak, Turkey
e-mail: murat.karacan@usak.edu.tr

Sezai Kiziltuğ
Department of Mathematics Education, Faculty of Sciences and Arts, Erzincan University 24000, Erzincan, Turkey
e-mail: skiziltug@erzincan.edu.tr
Abstract. In this study, we classify surfaces of revolution of Type 1 in the three dimensional Galilean space \mathbb{G}_{3} in terms of the position vector field, Gauss map, and Laplacian operator of the first and the second fundamental forms on the surface. Furthermore, we give a classification of surfaces of revolution of Type 1 generated by a non-isotropic curve satisfying the pointwise 1-type Gauss map equation.

1. Introduction

Let $\mathbf{x}: \mathbf{M} \rightarrow \mathbb{E}^{m}$ be an isometric immersion of a connected n-dimensional manifold in the m-dimensional Euclidean space \mathbb{E}^{m}. Denote by \mathbf{H} and Δ the mean curvature and the Laplacian of \mathbf{M} with respect to the Riemannian metric on \mathbf{M}

* Corresponding Author.

Received February 22,2019; revised March 23, 2020; accepted March 30, 2020.
2010 Mathematics Subject Classification: 53A35, 53A40, 53B30.
Key words and phrases: Laplace operator, Gauss map, Galilean space, surfaces of revolution, pointwise 1-type.
induced from that of \mathbb{E}^{m}, respectively. Takahashi [15] proved that the submanifolds in \mathbb{E}^{m} satisfying $\Delta \mathbf{x}=\lambda \mathbf{x}$, that is, for which all coordinate functions are eigenfunctions of the Laplacian with the same eigenvalue $\lambda \in \mathbb{R}$, are either the minimal submanifolds of \mathbb{E}^{m} or the minimal submanifolds of the hypersphere \mathbb{S}^{m-1} in \mathbb{E}^{m} $[5,6,18,19]$.

As an extension of Takahashi's theorem, Garay [11] studied hypersurfaces in \mathbb{E}^{m} whose coordinate functions are eigenfunctions of the Laplacian, but not necessarily associated to the same eigenvalue. He considered hypersurfaces in \mathbb{E}^{m} satisfying the condition

$$
\begin{equation*}
\Delta \mathrm{x}=\mathbf{A} \mathbf{x} \tag{1.1}
\end{equation*}
$$

where $\mathbf{A} \in \operatorname{Mat}(m, \mathbb{R})$ is an $m \times m$ diagonal matrix, and proved that such hypersurfaces are minimal $(\mathbf{H}=0)$ in \mathbb{E}^{m} and are open pieces of either round hyperspheres or generalized right spherical cylinders.

Related to this, Dillen, Pas and Verstraelen [9] investigated surfaces in \mathbb{E}^{3} whose immersions satisfy the condition

$$
\begin{equation*}
\Delta \mathrm{x}=\mathbf{A x}+\mathbf{B} \tag{1.2}
\end{equation*}
$$

where $\mathbf{A} \in \operatorname{Mat}(3, \mathbb{R})$ is a 3×3 real matrix and $\mathbf{B} \in \mathbb{R}^{3}[5,6,18,19]$.
The notion of an isometric immersion \mathbf{x} is naturally extended to smooth functions on submanifolds of Euclidean space or pseudo-Euclidean space. The most natural one of them is the Gauss map of the submanifold. In particular, if the submanifold is a hypersurface, the Gauss map can be identified with its unit normal vector field. Dillen, Pas and Verstraelen [10] studied surfaces of revolution in the three dimensional Euclidean space \mathbb{E}^{3} such that its Gauss map \mathbf{G} satisfies the condition

$$
\begin{equation*}
\Delta \mathbf{G}=\mathbf{A G} \tag{1.3}
\end{equation*}
$$

where $\mathbf{A} \in \operatorname{Mat}(3, \mathbb{R})$.
In the late 1970's B.-Y. Chen introduced the notion of Euclidean immersions of finite type. Essentially these are submanifolds whose immersion into the m-dimensional Euclidean space \mathbb{E}^{m} is constructed by making use of a finite number of \mathbb{E}^{m}-valued eigenfunctions of their Laplacian. The first results on this subject are collected in the book [3]. In a framework of the theory of finite type, B.-Y. Chen and P. Piccini [4] made a general study on submanifolds of Euclidean spaces with finite type Gauss maps. Several geometers also studied submanifolds of Euclidean spaces or pseudo-Euclidean spaces with finite type Gauss maps [11].

From the above definition one can see that a submanifold has 1-type Gauss map \mathbf{G} if and only if \mathbf{G} satisfies the equation

$$
\begin{equation*}
\Delta \mathbf{G}=\lambda(\mathbf{G}+\mathbf{C}) \tag{1.4}
\end{equation*}
$$

for a constant λ and a constant vector \mathbf{C}, where Δ denotes the Laplace operator on a submanifold. A plane, a circular cylinder and a sphere are surfaces with a 1-type

Gauss map. Similarly, a submanifold is said to have a pointwise 1-type Gauss map if the Laplacian of its Gauss map takes the form

$$
\begin{equation*}
\Delta \mathbf{G}=\mathbf{F}(\mathbf{G}+\mathbf{C}) \tag{1.5}
\end{equation*}
$$

for a non-zero smooth function \mathbf{F} and a constant vector \mathbf{C}. More precisely, a pointwise 1-type Gauss map is said to be of the first kind if (1.5) is satisfied for $\mathbf{C}=0$, and of the second kind if $\mathbf{C} \neq 0$. A helicoid, a catenoid and a right cone are the typical examples of surfaces with pointwise 1-type Gauss maps [7].

Sipus and Divjak [17] defined surfaces of revolution in the 3-dimensional pseudoGalilean space \mathbb{G}_{3}^{1} and described surfaces of revolution of constant curvature. Yoon [18, 19] characterized surfaces of revolution in \mathbb{G}_{3}^{1}. Dede, Ekici and Goemanse [8] defined and studied three types of surfaces of revolution in Galilean 3-space. They classified the surfaces of revolution with vanishing Gaussian curvature or vanishing mean curvature in Galilean 3 -space \mathbb{G}_{3}. Choi, Kim and Yoon [6] gave the classification of surfaces of revolution generated by an isotropic curve satisfying a pointwise 1-type Gauss map equation. Choi [5] completely classified the surfaces of revolution satisfying condition (1.3). Karacan, Yoon and Bukcu [13] classified surfaces of revolution satisfying $\Delta^{J} \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}, J=1,2$ and $\Delta^{I I I} \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$.

The main purpose of this paper is a complete classification of surfaces of revolution in the three dimensional Galilean space \mathbb{G}_{3} in terms of the position vector field, Gauss map, pointwise 1-type Gauss map equation and Laplacian operators of the first and the second fundamental forms on the surface.

2. Preliminaries

The Galilean space G_{3} is a Cayley-Klein space defined from a 3-dimensional projective space $\mathcal{P}\left(\mathbb{R}^{3}\right)$ with the absolute figure that consists of an ordered triple $\{w, f, I\}$, where w is the ideal (absolute) plane, f is the line (absolute line) in w and I is the fixed elliptic involution of points of f. We introduce homogeneous coordinates in G_{3} in such a way that the absolute plane w is given by $x_{0}=0$, the absolute line f by $x_{0}=x_{1}=0$ and the elliptic involution by $\left(0: 0: x_{2}: x_{3}\right) \rightarrow\left(0: 0: x_{3}:-x_{2}\right)$. In affine coordinates defined by $\left(0: x_{1}: x_{2}: x_{3}\right) \rightarrow(1: x: y: z)$, distance between points $P_{i}=\left(x_{i}, y_{i}, z_{i}\right), i=1,2$ is defined by

$$
d\left(P_{1}, P_{2}\right)=\left\{\begin{array}{lll}
\left|x_{2}-x_{1}\right|, & \text { if } & x_{1} \neq x_{2} \tag{2.1}\\
\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}, & \text { if } & x_{1}=x_{2}
\end{array}\right.
$$

The group of motions of G_{3} is a six-parameter group given (in affine coordinates) by

$$
\bar{x}=a+x, \bar{y}=b+c x+y \cos \theta+z \sin \theta, \bar{z}=d+e x-y \sin \theta+z \cos \theta
$$

A C^{r}-surface $S, r \geq 1$, immersed in the Galilean space, $\mathbf{x}: U \rightarrow S, U \subset \mathbb{R}^{2}$, $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v))$, has the following first fundamental form

$$
\mathbf{I}=\left(g_{1} d u+g_{2} d v\right)^{2}+\epsilon\left(h_{11} d u^{2}+2 h_{12} d u d v+h_{22} d v^{2}\right)
$$

where the symbols $g_{i}=x_{i}, h_{i j}=\tilde{\mathbf{x}}_{i} \cdot \tilde{x}_{j}$ stand for derivatives of the first coordinate function $x(u, v)$ with respect to u, v and for the Euclidean scalar product of the projections $\tilde{\mathbf{x}}_{k}$ of vectors \mathbf{x}_{k} onto the $y z$-plane, respectively. Furthermore,

$$
\epsilon= \begin{cases}0, & \text { if direction } d u: d v \text { is non-isotropic }, \\ 1, & \text { if direction } d u: d v \text { is isotropic. }\end{cases}
$$

In every point of a surface there exists a unique isotropic direction defined by $g_{1} d u+g_{2} d v=0$. In that direction, the arc length is measured by

$$
d s^{2}=h_{11} d u^{2}+2 h_{12} d u d v+h_{22} d v^{2}=\frac{h_{11} g_{2}^{2}-2 h_{12} g_{1} g_{2}+h_{22} g_{1}^{2}}{g_{1}^{2}}=\frac{W^{2}}{g_{1}^{2}} d v^{2},
$$

where $g_{1} \neq 0$.
A surface is called admissible if it has no Euclidean tangent planes. Therefore, for an admissible surface either $g_{1} \neq 0$ or $g_{2} \neq 0$ holds. An admissible surface can always locally be expressed as

$$
z=f(u, v) .
$$

The Gaussian \mathbf{K} and mean curvature \mathbf{H} are C^{r-2} functions, $r \geq 1$, defined by

$$
\mathbf{K}=\frac{L N-M^{2}}{W^{2}}, \mathbf{H}=\frac{g_{2}^{2} L-2 g_{1} g_{2} M+g_{1}^{2} N}{2 W^{2}},
$$

where

$$
L_{i j}=\frac{x_{1} \mathbf{x}_{i j}-x_{i j} \mathbf{x}_{1}}{x_{1}} \cdot \mathbf{G}, \quad x_{1}=g_{1} \neq 0 .
$$

We will use $L_{i j}, i, j=1,2$, for L, M, N if more convenient. The vector \mathbf{G} defines a normal vector to a surface

$$
\mathbf{G}=\frac{1}{W}\left(0,-x_{2} z_{1}+x_{1} z_{2}, x_{2} y_{1}-x_{1} y_{2}\right),
$$

where $W^{2}=\left(x_{2} \mathbf{x}_{1}-x_{1} \mathbf{x}_{2}\right)^{2}[8,14]$.
It is well known in terms of local coordinates $\{u, v\}$ of \mathbf{M} the Laplacian operators Δ^{I} and Δ^{II} of the first and the second fundamental forms on M are defined by

$$
\begin{equation*}
\Delta^{\mathbf{I}} \mathbf{x}=-\frac{1}{\sqrt{E G-F^{2}}}\left[\frac{\partial}{\partial u}\left(\frac{G \mathbf{x}_{u}-F \mathbf{x}_{v}}{\sqrt{E G-F^{2}}}\right)-\frac{\partial}{\partial v}\left(\frac{F \mathbf{x}_{u}-E \mathbf{x}_{v}}{\sqrt{E G-F^{2}}}\right)\right] \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\Delta^{\mathrm{II}} \mathbf{x}=-\frac{1}{\sqrt{L N-M^{2}}}\left[\frac{\partial}{\partial u}\left(\frac{N \mathbf{x}_{u}-M \mathbf{x}_{v}}{\sqrt{L N-M^{2}}}\right)-\frac{\partial}{\partial v}\left(\frac{M \mathbf{x}_{u}-L \mathbf{x}_{v}}{\sqrt{L N-M^{2}}}\right)\right] \tag{2.4}
\end{equation*}
$$

$[1,2,12,13,16]$.

3. Surfaces of Revolution in G_{3}

In the Galilean space \mathbb{G}_{3} there are two types of rotations: Euclidean rotations given by the normal form

$$
\begin{equation*}
\bar{x}=x, \bar{y}=y \cos v+z \sin v, \bar{z}=-y \sin v+z \cos v \tag{3.1}
\end{equation*}
$$

and isotropic rotations with the normal form

$$
\begin{equation*}
\bar{x}=x+c t, \bar{y}=y+x t+c \frac{t^{2}}{2}, \bar{z}=z \tag{3.2}
\end{equation*}
$$

Then the surface of revolution of Type 1 can be written as

$$
\begin{equation*}
\mathbf{x}(u, v)=(f(u), g(u) \cos v,-g(u) \sin v) \tag{3.3}
\end{equation*}
$$

Suppose that α is parametrized by arc-length. In this case, the parametrization of \mathbf{M} is given by

$$
\begin{equation*}
\mathbf{x}(u, v)=(u, g(u) \cos v,-g(u) \sin v) \tag{3.4}
\end{equation*}
$$

Next, we consider the isotropic rotations. By rotating the isotropic curve $\alpha(u)=(0, f(u), g(u))$ about the z-axis by isotropic rotation (3.2), we obtain the parametrization of the surface of revolution of Type 2 as

$$
\begin{equation*}
\mathbf{x}(u, v)=\left(c v, f(u)+\frac{c v^{2}}{2}, g(u)\right) \tag{3.5}
\end{equation*}
$$

where f and g are smooth functions and $c \neq 0 \in \mathbb{R}[12]$.
Finally, we assume, again without loss of generality, that the profile curve $\alpha(u)=(f(u), g(u), 0)$ lies in the isotropic $x y-$ plane and is parameterized by

$$
\begin{equation*}
\mathbf{x}(u, v)=\left(f(u)+c v, g(u), v f(u)+\frac{c v^{2}}{2}\right) \tag{3.6}
\end{equation*}
$$

where f and g are smooth functions and $c \neq 0 \in \mathbb{R}$. The surface (3.6) is called the surface of revolution of Type 3 [12].

4. Surfaces of Revolution of Type 1 Satisfying $\Delta^{I} x=\mathbf{A x}$

In this section, we classify surface of revolution of Type 1 given in \mathbb{G}_{3} satisfying the equation

$$
\begin{equation*}
\boldsymbol{\Delta}^{\mathrm{I}} \mathbf{x}=\mathbf{A x} \tag{4.1}
\end{equation*}
$$

where $\mathbf{A}=\left(\mathbf{a}_{i j}\right) \in \operatorname{Mat}(3, R)$ and

$$
\begin{equation*}
\Delta^{\mathbf{I}} \mathbf{x}_{i}=\left(\Delta^{\mathbf{I}} \mathbf{x}_{1}, \Delta^{\mathbf{I}} \mathbf{x}_{2}, \Delta^{\mathbf{I}} \mathbf{x}_{3}\right) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{x}_{1}=u, \mathbf{x}_{2}=g(u) \cos v, \mathbf{x}_{3}=-g(u) \sin v . \tag{4.3}
\end{equation*}
$$

For this surface of revolution, the coefficients of the first and second fundamental forms are

$$
\begin{align*}
& g_{1}=1, g_{2}=0, h_{11}=g^{\prime^{2}}(u), h_{12}=0, h_{22}=g^{2}(u), \\
& L_{11}=L=-g^{\prime \prime}(u), \quad L_{22}=N=g(u), L_{12}=M=0, \tag{4.4}\\
& E=1, \quad F=0, \quad G=g^{2}(u)
\end{align*}
$$

respectively. The Gaussian curvature \mathbf{K} and the mean curvature \mathbf{H} are

$$
\begin{equation*}
\mathbf{K}=-\frac{g^{\prime \prime}(u)}{g(u)}, \quad \mathbf{H}=\frac{1}{2 g(u)} . \tag{4.5}
\end{equation*}
$$

Corollary 4.1. There are no minimal surfaces of revolution (3.4).
Corollary 4.2. The profile curve of surface of revolution of Type 1 of constant Gaussian curvature in \mathbb{G}_{3} is as follows:
(1) If $\mathbf{K}=\frac{1}{a^{2}}$, then the general solution of the differential equation (4.5) is

$$
g(u)=c_{1} \cos \frac{u}{a}+c_{2} \sin \frac{u}{a},
$$

where $c_{1}, c_{2}, a \in \mathbb{R}$.
(2) If $\mathbf{K}=0$, then the general solution of the differential equation (4.5) is

$$
g(u)=c_{1} u+c_{2},
$$

where $c_{1}, c_{2} \in \mathbb{R}$.
The Laplacian operator on \mathbf{M} with the help of (2.3), (4.3) and (4.4) turns out to be

$$
\Delta^{\mathbf{I}} \mathbf{x}=\left(-\frac{g^{\prime}}{g}, \frac{\cos v\left(1-g^{\prime^{2}}-g g^{\prime \prime}\right)}{g},-\frac{\sin v\left(1-g^{\prime^{2}}-g g^{\prime \prime}\right)}{g}\right) .
$$

Suppose that M satisfies (4.1). Then from (4.2) and (4.3), we have

$$
\left.\begin{array}{rl}
a_{11} u+a_{12} g(u) \cos v-a_{13} g(u) \sin v & =-\frac{g^{\prime}}{g} \\
a_{21} u+a_{22} g(u) \cos v-a_{23} g(u) \sin v & =\frac{\cos v\left(1-g^{\prime^{2}}-g g^{\prime \prime}\right)}{g} \tag{4.6}\\
a_{31} u+a_{32} g(u) \cos v-a_{33} g(u) \sin v & =-\frac{\sin v\left(1-g^{\prime^{\prime}}-g g^{\prime \prime}\right)}{g}
\end{array}\right\}
$$

Since the functions $\cos v, \sin v$ and the constant function are linearly independent, by (4.6) we get $a_{12}=a_{13}=a_{21}=a_{23}=a_{31}=a_{32}=0, a_{11}=\lambda, a_{22}=a_{33}=\mu$. Consequently the matrix A satisfies

$$
\mathbf{A}=\left[\begin{array}{lll}
\lambda & 0 & 0 \tag{4.7}\\
0 & \mu & 0 \\
0 & 0 & \mu
\end{array}\right]
$$

and (4.6) can be rewritten as

$$
\begin{equation*}
\mu g(u) \cos v=\frac{\cos v\left(1-g^{\prime^{2}}-g g^{\prime \prime}\right)}{g}, \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
\mu g(u) \sin v=\frac{\sin v\left(1-g^{\prime^{2}}-g g^{\prime \prime}\right)}{g} . \tag{4.10}
\end{equation*}
$$

From (4.8), (4.9) and (4.10), we obtain

$$
\begin{array}{r}
\lambda u=-\frac{g^{\prime}}{g} \text { or } g=-\frac{g^{\prime}}{\lambda u}, \lambda \neq 0 . \\
\mu g(u)=\frac{\left(1-{\left.g^{\prime^{2}}-g g^{\prime \prime}\right)}_{g}^{g} .\right.}{} . \tag{4.11}\\
\\
\\
\end{array}
$$

Combining the first and the second equation of (4.11), we obtain

$$
\begin{equation*}
\left(\lambda u+\frac{\mu}{\lambda u}\right) g^{\prime}(u)-\frac{\lambda u}{g^{\prime}(u)}-g^{\prime \prime}(u)=0 . \tag{4.12}
\end{equation*}
$$

If we solve ordinary differential equation (4.12) with Mathematica, we get

$$
\begin{equation*}
g(u)=c_{1} \pm \int_{1}^{u} e^{\frac{\lambda x^{2}}{2}} \sqrt{\left(c_{2} x^{\frac{2 \mu}{\lambda}}+\left(\lambda x^{2}\right)^{\frac{\mu}{\lambda}} \operatorname{Gamma}\left[1-\frac{\mu}{\lambda}, \lambda x^{2}\right]\right)} d x \tag{4.13}
\end{equation*}
$$

where $\lambda \neq 0, \mu \neq 0, c_{i} \in \mathbb{R}$. The solution (4.13) does not satisfy (4.8) and (4.9). Let $\lambda \neq 0, \mu=0$, from (4.12), we obtain

$$
\begin{equation*}
(\lambda u) g^{\prime}(u)-\frac{\lambda u}{g^{\prime}(u)}-g^{\prime \prime}(u)=0 . \tag{4.14}
\end{equation*}
$$

Its general solution is

$$
\begin{equation*}
g(u)=c_{1} \pm \int_{1}^{u} \sqrt{1+e^{2 c_{2}+\lambda x^{2}}} d x \tag{4.15}
\end{equation*}
$$

where $c_{1}, c_{2} \in \mathbb{R}$. The solution (4.15) does not satisfy (4.8) and (4.9). Since $\lambda \neq 0$, there is no harmonic surface of revolution given by (3.4) in the three dimensional Galilean space \mathbb{G}_{3}.

5. Surfaces of Revolution of Type 1 Satisfying $\Delta^{I I} \mathbf{x}=\mathbf{A x}$

In this section, we classify surfaces of revolution of Type 1 with non-degenerate second fundamental form in \mathbb{G}_{3} satisfying the equation

$$
\begin{equation*}
\Delta^{\mathrm{II}} \mathbf{x}=\mathbf{A x} \tag{5.1}
\end{equation*}
$$

where $\mathbf{A}=\left(\mathbf{a}_{i j}\right) \in \operatorname{Mat}(3, R)$. By a straightforward computation, the Laplacian $\boldsymbol{\Delta}^{\mathbf{I I}}$ of the second fundamental form II on \mathbf{M} is expressible as

$$
\Delta^{\mathbf{I I}} \mathbf{x}_{i}=\left(\begin{array}{c}
\left(\frac{g^{\prime}(u) g^{\prime \prime}(u)-g(u) g^{\prime \prime \prime}(u)}{2 g(u) g^{\prime \prime^{2}}(u)}\right) \tag{5.2}\\
\cos v\left(\frac{g^{\prime 2}(u) g^{\prime \prime}(u)+4 g(u) g^{\prime \prime 2}(u)-g(u) g^{\prime}(u) g^{\prime \prime \prime}(u)}{2 g(u) g^{\prime \prime 2}(u)}\right) \\
-\sin v\left(\frac{g^{\prime 2}(u) g^{\prime \prime}(u)+4 g(u) g^{\prime \prime 2}(u)-g(u) g^{\prime}(u) g^{\prime \prime \prime}(u)}{2 g(u) g^{\prime \prime 2}(u)}\right)
\end{array}\right)
$$

Suppose that M satisfies (5.1). Then from (2.4) and (4.4), we have

$$
\begin{align*}
& a_{11} u+a_{12} g(u) \cos v-a_{13} g(u) \sin v=\frac{1}{2 g^{\prime \prime}}\left(\frac{g^{\prime}}{g}-\frac{g^{\prime \prime \prime}}{g^{\prime \prime}}\right) \\
& a_{21} u+a_{22} g(u) \cos v-a_{23} g(u) \sin v=\cos v\left(\frac{1}{2 g^{\prime \prime}}\left(\frac{g^{\prime}}{g}-\frac{g^{\prime \prime \prime}}{g^{\prime \prime}}\right)+2\right), \tag{5.3}\\
& a_{31} u+a_{32} g(u) \cos v-a_{33} g(u) \sin v=-\sin v\left(\frac{1}{2 g^{\prime \prime}}\left(\frac{g^{\prime}}{g}-\frac{g^{\prime \prime \prime}}{g^{\prime \prime}}\right)+2\right) .
\end{align*}
$$

Since the functions $\cos v, \sin v$ and the constant function are linearly independent, by (5.3) we get $a_{12}=a_{13}=a_{21}=a_{23}=a_{31}=a_{32}=0, a_{11}=\lambda, a_{22}=a_{33}=\mu$. Consequently matrix A satisfies

$$
\mathbf{A}=\left[\begin{array}{ccc}
\lambda & 0 & 0 \tag{5.4}\\
0 & \mu & 0 \\
0 & 0 & \mu
\end{array}\right]
$$

Then the system (5.3) reduces now to the equations

$$
\begin{align*}
2 \lambda u g^{\prime \prime^{2}} & =g^{\prime} g^{\prime \prime}-g g^{\prime \prime \prime} \\
-2 \mu g^{2} g^{\prime \prime^{2}}-4 \mu g g^{\prime \prime^{2}} & =g^{\prime}\left(g^{\prime} g^{\prime \prime}-g g^{\prime \prime \prime}\right) \tag{5.5}
\end{align*}
$$

Combining the first and the second equation of (5.5), we get

$$
\begin{equation*}
2-\mu g+\lambda u g^{\prime}=0 \tag{5.6}
\end{equation*}
$$

where $g \neq 0$ and $g^{\prime \prime} \neq 0$. Its general solution is given by

$$
\begin{equation*}
g(u)=\frac{2}{\mu}+c_{1} u^{\frac{\mu}{\lambda}} \tag{5.7}
\end{equation*}
$$

where $c_{1} \in \mathbb{R}$. The solution (5.7) does not satisfies (5.5). If $\lambda \neq 0, \mu=0$, then we have

$$
\begin{equation*}
g(u)=c_{1}-\frac{2 \ln u}{\lambda} \tag{5.8}
\end{equation*}
$$

The solution (5.8) does not satisfies (5.5). Let $\lambda=0, \mu=0$, from (5.6), we have a contradiction. Consequently, we have:

Theorem 5.1. Let \mathbf{M} be a non-isotropic surface of revolution of Type 1 with non-degenerate second fundamental form given by (3.4) in the three dimensional Galilean space \mathbb{G}_{3}. There is no the surface \mathbf{M} satisfying the condition $\Delta^{\mathbf{I I}} \mathbf{x}=\mathbf{A x}$, $\mathbf{A} \in \operatorname{Mat}(3, R)$.

6. Surfaces of Revolution of Type 1 Satisfying $\Delta^{I} G=A G$

In this section, we classify surfaces of revolution of Type 1 in \mathbb{G}_{3} satisfying the equation

$$
\begin{equation*}
\Delta^{\mathrm{I}} \mathbf{G}=\mathbf{A G} \tag{6.1}
\end{equation*}
$$

where $\mathbf{A}=\left(\mathbf{a}_{i j}\right) \in \operatorname{Mat}(3, R)$.
Theorem 6.1. Let \mathbf{M} be a surface of revolution given by (3.4) in the three dimensional Galilean space \mathbb{G}_{3}. Then \mathbf{M} satisfies (6.1) if and only if it is an open part of a cylinder.
Proof. Let M be a surface of revolution generated by a unit speed nonisotropic curve in \mathbb{G}_{3}. Then \mathbf{M} is parametrized by

$$
\begin{equation*}
\mathbf{x}(u, v)=(u, g(u) \cos v,-g(u) \sin v) \tag{6.2}
\end{equation*}
$$

where g is a positive function. The Gauss map \mathbf{G} of \mathbf{M} is obtained by

$$
\begin{equation*}
\mathbf{G}=(0,-\cos v, \sin v) \tag{6.3}
\end{equation*}
$$

Suppose that \mathbf{M} satisfies (6.1). Then from (4.4) and (5.3) we get the system of differential equations

$$
\begin{align*}
& -a_{12} \cos v+a_{13} \sin v=0 \\
& -a_{22} \cos v+a_{23} \sin v=-\frac{\cos v}{g^{2}} \tag{6.4}\\
& -a_{32} \cos v+a_{33} \sin v=\frac{\sin v}{g^{2}}
\end{align*}
$$

In order to prove the theorem we have to solve (6.4). From (6.4) we easily deduce that

$$
\begin{equation*}
a_{12}=a_{13}=a_{21}=a_{23}=a_{32}=0, a_{22}=a_{33}, a_{22}=a_{33}=\frac{1}{g^{2}(u)} \tag{6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{\mathbf{I}} \mathbf{G}=\frac{1}{g^{2}(u)} \mathbf{G} . \tag{6.6}
\end{equation*}
$$

From this $g(u)$ is a constant function. Consequently, \mathbf{M} is an open part of a cylinder. It can be easily shown that the converse assertion is also true.

Theorem 6.2. There is no surfaces of revolution of Type 1 generated by a nonisotropic curve in \mathbb{G}_{3} with harmonic Gauss map.
Proof. Let \mathbf{M} be a surface of revolution of Type 1 defined by (3.4) in \mathbb{G}_{3}. If \mathbf{M} has harmonic Gauss map, that is, \mathbf{M} satisfies $\boldsymbol{\Delta}^{\mathbf{I}} \mathbf{G}=0$, then $g^{-2}(u) \mathbf{G}=0$. It is impossible because $g(u)$ is a positive function and \mathbf{G} is the unit normal vector field of M .
Theorem 6.3. Let \mathbf{M} be a surface of revolution of Type 1 generated by a nonisotropic curve in the three dimensional Galilean space \mathbb{G}_{3}. Then \mathbf{M} has point wise 1-type Gauss map of the first kind.
Proof. Let M be a surface of revolution of Type 1 generated by a non-isotropic curve in \mathbb{G}_{3}. Suppose that \mathbf{M} has pointwise 1 -type Gauss map. Combining (1.5) and (6.6), one gets $\mathbf{F}(u)=g^{-2}(u)$ and $\mathbf{C}=0$. Thus the Gauss map \mathbf{G} of \mathbf{M} is of pointwise 1-type of the first kind.
Theorem 6.4. There is no surface of revolution of Type 1 generated by a nonisotropic curve in \mathbb{G}_{3} with pointwise 1-type Gauss map of the second kind.
Proof. Let M be a surface of revolution of Type 1 defined by (3.4) in \mathbb{G}_{3}. By Theorem 6.3, M has only pointwise 1-type Gauss map of the first kind. Thus, the theorem is proved.
Remark 6.5. We consider a surface defined by

$$
\begin{equation*}
\mathbf{x}(u, v)=\left(u,\left(a^{2} u+b^{2}\right) \cos v,-\left(a^{2} u+b^{2}\right) \sin v\right), \tag{6.7}
\end{equation*}
$$

where $a, b \in \mathbb{R}$ and $u>-\frac{b^{2}}{a^{2}}$. The surface is a cone satisfying the $\left(a^{2} x+b^{2}\right)^{2}=$ $y^{2}+z^{2}$. From (6.6) the Laplacian $\Delta^{\mathbf{I}} \mathbf{G}$ of the Gauss map \mathbf{G} of the surface is obtained by

$$
\begin{equation*}
\Delta^{\mathbf{I}} \mathbf{G}=\frac{1}{\left(a^{2} u+b^{2}\right)^{2}} \mathbf{G} . \tag{6.8}
\end{equation*}
$$

Thus, a cone in \mathbb{G}_{3} has pointwise 1-type Gauss map of the first kind.

7. Surfaces of Revolution of Type 1 Satisfying $\Delta^{\text {II }} \mathbf{G}=$ AG

In this section, we classify surfaces of revolution of Type 1 in \mathbb{G}_{3} satisfying the equation

$$
\begin{equation*}
\Delta^{\mathrm{II}} \mathbf{G}=\mathbf{A G} \tag{7.1}
\end{equation*}
$$

where $\mathbf{A}=\left(\mathbf{a}_{i j}\right) \in \operatorname{Mat}(3, R)$.
Theorem 7.1. There is no non-isotropic surfaces of revolution of Type 1 given by (4.2) satisfying (7.1) in the three dimensional Galilean space \mathbb{G}_{3}.

Proof. Let \mathbf{M} be a surface of revolution generated by a unit speed nonisotropic curve in \mathbb{G}_{3}. Suppose that \mathbf{M} satisfies (7.1). Then from (4.4) and (5.3) we get the system of equations

$$
\begin{align*}
& -a_{12} \cos v+a_{13} \sin v=0 \\
& -a_{22} \cos v+a_{23} \sin v=-\frac{\cos v}{g} \tag{7.2}\\
& -a_{32} \cos v+a_{33} \sin v=\frac{\sin v}{g}
\end{align*}
$$

In order to prove the theorem we have to solve (7.2). From (7.2) we easily deduce that

$$
a_{12}=a_{13}=a_{21}=a_{23}=a_{32}=0, a_{22}=a_{33}, a_{22}=\frac{1}{g(u)}
$$

and

$$
\begin{equation*}
\Delta^{\mathbf{I I}} \mathbf{G}=\frac{1}{g(u)} \mathbf{G} \tag{7.3}
\end{equation*}
$$

From this $g(u)$ is a constant function. For the nondegeneracy of the second fundamental form of \mathbf{M}, we assume that $g^{\prime \prime}$ is nonvanishing everywhere. If a non-isotropic surface of revolution of Type 1 satisfies (7.1), then the function g is constant. It is a contradiction.

Theorem 7.2. There is no surfaces of revolution of Type 1 generated by a nonisotropic curve in \mathbb{G}_{3} with harmonic Gauss map.
Proof. Let \mathbf{M} be a surface of revolution of Type 1 defined by (4.1) in \mathbb{G}_{3}. If \mathbf{M} has harmonic Gauss map, that is, \mathbf{M} satisfies $\Delta^{\mathbf{I I}} \mathbf{G}=0$, then $g^{-1}(u) \mathbf{G}=0$. It is impossible because $g(u)$ is a positive function and \mathbf{G} is the unit normal vector field of M.

Theorem 7.3. Let \mathbf{M} be a surface of revolution of Type 1 generated by a nonisotropic curve in the three dimensional Galilean space \mathbb{G}_{3}. Then \mathbf{M} has point wise 1-type Gauss map of the first kind.
Proof. Let \mathbf{M} be a surface of revolution of Type 1 generated by a non-isotropic
curve in \mathbb{G}_{3}. Suppose that \mathbf{M} has pointwise 1-type Gauss map. Combining (1.5) and (7.3), one gets $\mathbf{F}(u)=g^{-1}(u)$ and $\mathbf{C}=0$. Thus the Gauss map \mathbf{G} of \mathbf{M} is of pointwise 1-type of the first kind.

Theorem 7.4. There is no surface of revolution of Type 1 generated by a nonisotropic curve in \mathbb{G}_{3} with pointwise 1-type Gauss map of the second kind.
Proof. Let \mathbf{M} be a surface of revolution of Type 1 defined by (4.1) in \mathbb{G}_{3}. By Theorem 7.3, \mathbf{M} has only pointwise 1-type Gauss map of the first kind. Thus, the theorem is proved.

Remark 7.5. We consider a surface defined by

$$
\begin{equation*}
\mathbf{x}(u, v)=\left(u,\left(a^{2} u+b^{2}\right) \cos v,-\left(a^{2} u+b^{2}\right) \sin v\right) \tag{7.4}
\end{equation*}
$$

where $a, b \in \mathbb{R}$ and $u>-\frac{b^{2}}{a^{2}}$. The surface is a cone satisfying the $\left(a^{2} x+b^{2}\right)^{2}=$ $y^{2}+z^{2}$. From (7.3) the Laplacian $\Delta^{\mathbf{I I}} \mathbf{G}$ of the Gauss map \mathbf{G} of the surface is obtained by

$$
\begin{equation*}
\Delta^{\mathrm{II}} \mathbf{G}=\frac{1}{\left(a^{2} u+b^{2}\right)} \mathbf{G} . \tag{7.5}
\end{equation*}
$$

Thus, a cone in \mathbb{G}_{3} has pointwise 1-type Gauss map of the first kind.

References

[1] M. Bekkar and H. Zoubir Surfaces of revolution in the 3-dimensional LorentzMinkowski space satisfying $\Delta x^{i}=\lambda^{i} x^{i}$, Int. J. Contemp. Math. Sci., 3(2008), 11731185.
[2] M. Bekkar and B. Senoussi, Translation surfaces in the 3-dimensional space satisfying $\Delta^{I I I} r_{i}=\mu_{i} r_{i}$, J. Geom., 103(3)(2012), 367-374.
[3] B.-Y. Chen, Total mean curvature and submanifolds of finite type, Series in Pure Mathematics 1, World Scientific Publ., 1984.
[4] B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35(2)(1987), 161-186.
[5] S. M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math., 19(2)(1995), 351-367.
[6] S. M. Choi, Y. H. Kim and D. W. Yoon, Some classification of surfaces of revolution in Minkowski 3-space, J. Geom., 104(2013), 85-106.
[7] M. Choi and D. W Yoon, Surfaces of revolution with pointwise 1-type Gauss map in pseudo-Galilean space, Bull. Korean Math. Soc., 53(2)(2016), 519-530.
[8] M.Dede, C. Ekici and W. Goemans, Surfaces of revolution with vanishing curvature in Galilean 3-space, Zh. Mat. Fiz. Anal. Geom., 14(2018), 141--152.
[9] F. Dillen, J. Pas and L. Vertraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13(1990), 10-21.
[10] F. Dillen, J. Pas and L. Verstraelen, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica, 18(1990), 239-246.
[11] O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata, 34(1990), 105112.
[12] G. Kaimakamis, B. Papantoniou and K. Petoumenos, Surfaces of revolution in the 3dimensional Lorentz-Minkowski space E_{1}^{3} satisfying $\Delta^{I I I} \vec{r}=A \vec{r}$, Bull. Greek Math. Soc., 50(2005), 75-90.
[13] M. K. Karacan, D. W. Yoon and B. Bukcu, Surfaces of revolution in the three dimensional simply isotropic space \mathbb{I}_{3}^{1}, Asia Pac. J. Math., 4(1)(2017), 1-10.
[14] B. Senoussi and M. Bekkar, Helicoidal surfaces with $\Delta^{J} r=A r$ in 3-dimensional Euclidean space, Stud. Univ. Babes-Bolyai Math., 60(3)(2015), 437-448.
[15] Z. M. Sipus and B. Divjak, Translation surfacesin in the Galilean space, Glas. Mat. Ser. III, 46(66)(2011), 455-469.
[16] Z. M. Sipus and B. Divjak, Surfaces of constant curvature in the pseudo-Galilean space, Int. J. Math. Math. Sci., (2012), Art. ID 375264, 28 pp.
[17] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18(1966), 380-385.
[18] D. W. Yoon, Surfaces of revolution in the three dimensional pseudo-Galilean space, Glas. Mat. Ser. III, 48(68)(2013), 415-428.
[19] D. W. Yoon, Classification of rotational surfaces in pseudo-Galilean space, Glas. Mat. Ser. III, 50(70)(2015), 453-465.

