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Abstract. In this study, we classify surfaces of revolution of Type 1 in the three dimen-

sional Galilean space G3 in terms of the position vector field, Gauss map, and Laplacian

operator of the first and the second fundamental forms on the surface. Furthermore, we

give a classification of surfaces of revolution of Type 1 generated by a non-isotropic curve

satisfying the pointwise 1-type Gauss map equation.

1. Introduction

Let x : M→Em be an isometric immersion of a connected n-dimensional man-
ifold in the m-dimensional Euclidean space Em. Denote by H and ∆ the mean
curvature and the Laplacian of M with respect to the Riemannian metric on M
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induced from that of Em, respectively. Takahashi [15] proved that the submanifolds
in Em satisfying ∆x = λx, that is, for which all coordinate functions are eigen-
functions of the Laplacian with the same eigenvalue λ ∈ R, are either the minimal
submanifolds of Em or the minimal submanifolds of the hypersphere Sm−1 in Em
[5, 6, 18, 19].

As an extension of Takahashi’s theorem, Garay [11] studied hypersurfaces in Em
whose coordinate functions are eigenfunctions of the Laplacian, but not necessarily
associated to the same eigenvalue. He considered hypersurfaces in Em satisfying
the condition

(1.1) ∆x = Ax,

where A ∈Mat (m,R) is an m×m diagonal matrix, and proved that such hypersur-
faces are minimal (H = 0) in Em and are open pieces of either round hyperspheres
or generalized right spherical cylinders.

Related to this, Dillen, Pas and Verstraelen [9] investigated surfaces in E3 whose
immersions satisfy the condition

(1.2) ∆x = Ax + B,

where A ∈Mat (3,R) is a 3× 3 real matrix and B ∈ R3 [5, 6, 18, 19].
The notion of an isometric immersion x is naturally extended to smooth func-

tions on submanifolds of Euclidean space or pseudo-Euclidean space. The most
natural one of them is the Gauss map of the submanifold. In particular, if the
submanifold is a hypersurface, the Gauss map can be identified with its unit nor-
mal vector field. Dillen, Pas and Verstraelen [10] studied surfaces of revolution in
the three dimensional Euclidean space E3 such that its Gauss map G satisfies the
condition

(1.3) ∆G = AG,

where A ∈Mat (3,R).
In the late 1970’s B.-Y. Chen introduced the notion of Euclidean immer-

sions of finite type. Essentially these are submanifolds whose immersion into the
m−dimensional Euclidean space Em is constructed by making use of a finite number
of Em-valued eigenfunctions of their Laplacian. The first results on this subject are
collected in the book [3]. In a framework of the theory of finite type, B.-Y. Chen
and P. Piccini [4] made a general study on submanifolds of Euclidean spaces with
finite type Gauss maps. Several geometers also studied submanifolds of Euclidean
spaces or pseudo-Euclidean spaces with finite type Gauss maps [11].

From the above definition one can see that a submanifold has 1-type Gauss map
G if and only if G satisfies the equation

(1.4) ∆G = λ (G + C)

for a constant λ and a constant vector C, where ∆ denotes the Laplace operator on
a submanifold. A plane, a circular cylinder and a sphere are surfaces with a 1-type
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Gauss map. Similarly, a submanifold is said to have a pointwise 1-type Gauss map
if the Laplacian of its Gauss map takes the form

(1.5) ∆G = F (G + C)

for a non-zero smooth function F and a constant vector C. More precisely, a
pointwise 1-type Gauss map is said to be of the first kind if (1.5) is satisfied for
C = 0, and of the second kind if C 6= 0. A helicoid, a catenoid and a right cone are
the typical examples of surfaces with pointwise 1-type Gauss maps [7].

Sipus and Divjak [17] defined surfaces of revolution in the 3-dimensional pseudo-
Galilean space G1

3 and described surfaces of revolution of constant curvature. Yoon
[18, 19] characterized surfaces of revolution in G1

3. Dede, Ekici and Goemanse
[8] defined and studied three types of surfaces of revolution in Galilean 3-space.
They classified the surfaces of revolution with vanishing Gaussian curvature or
vanishing mean curvature in Galilean 3-space G3. Choi, Kim and Yoon [6] gave the
classification of surfaces of revolution generated by an isotropic curve satisfying a
pointwise 1-type Gauss map equation. Choi [5] completely classified the surfaces
of revolution satisfying condition (1.3). Karacan, Yoon and Bukcu [13] classified
surfaces of revolution satisfying ∆Jxi = λixi, J = 1, 2 and ∆IIIxi = λixi.

The main purpose of this paper is a complete classification of surfaces of rev-
olution in the three dimensional Galilean space G3 in terms of the position vector
field, Gauss map, pointwise 1-type Gauss map equation and Laplacian operators of
the first and the second fundamental forms on the surface.

2. Preliminaries

The Galilean space G3 is a Cayley-Klein space defined from a 3-dimensional
projective space P(R3) with the absolute figure that consists of an ordered triple
{w, f, I}, where w is the ideal (absolute) plane, f is the line (absolute line) in w and I
is the fixed elliptic involution of points of f . We introduce homogeneous coordinates
in G3 in such a way that the absolute plane w is given by x0 = 0, the absolute line
f by x0 = x1 = 0 and the elliptic involution by (0 : 0 : x2 : x3)→ (0 : 0 : x3 : −x2).
In affine coordinates defined by (0 : x1 : x2 : x3) → (1 : x : y : z), distance between
points Pi = (xi, yi, zi), i = 1, 2 is defined by

(2.1) d (P1, P2) =

{
|x2 − x1| , if x1 6= x2√

(y2 − y1)
2

+ (z2 − z1)
2
, if x1 = x2.

The group of motions of G3 is a six-parameter group given (in affine coordinates)
by

x = a+ x, y = b+ cx+ y cos θ + z sin θ, z = d+ ex− y sin θ + z cos θ.

A Cr-surface S, r ≥ 1, immersed in the Galilean space, x : U → S, U ⊂ R2,
x(u, v) = (x(u, v), y(u, v), z(u, v)), has the following first fundamental form

I = (g1du+ g2dv)
2

+ ε
(
h11du

2 + 2h12dudv + h22dv
2
)
,



588 A. Çakmak, H. Es, M. K. Karacan and S. Kızıltuğ

where the symbols gi = xi, hij =
∼
xi.
∼
xj stand for derivatives of the first coordinate

function x(u, v) with respect to u, v and for the Euclidean scalar product of the

projections
∼
xk of vectors xk onto the yz-plane, respectively. Furthermore,

ε =

{
0, if direction du : dv is non-isotropic,
1, if direction du : dv is isotropic.

In every point of a surface there exists a unique isotropic direction defined by
g1du+ g2dv = 0. In that direction, the arc length is measured by

ds2 = h11du
2 + 2h12dudv + h22dv

2 =
h11g

2
2 − 2h12g1g2 + h22g

2
1

g21
=
W 2

g21
dv2,

where g1 6= 0.
A surface is called admissible if it has no Euclidean tangent planes. Therefore,

for an admissible surface either g1 6= 0 or g2 6= 0 holds. An admissible surface can
always locally be expressed as

z = f(u, v).

The Gaussian K and mean curvature H are Cr−2 functions, r ≥ 1, defined by

K =
LN −M2

W 2
, H =

g22L− 2g1g2M + g21N

2W 2
,

where

Lij =
x1xij − xijx1

x1
.G, x1 = g1 6= 0.

We will use Lij , i, j = 1, 2, for L, M, N if more convenient. The vector G defines
a normal vector to a surface

G =
1

W
(0,−x2z1 + x1z2, x2y1 − x1y2) ,

where W 2 = (x2x1 − x1x2)
2

[8, 14].
It is well known in terms of local coordinates {u, v} of M the Laplacian operators

∆I and ∆II of the first and the second fundamental forms on M are defined by

(2.3) ∆Ix = − 1√
EG− F 2

[
∂

∂u

(
Gxu − Fxv√
EG− F 2

)
− ∂

∂v

(
Fxu − Exv√
EG− F 2

)]
,

(2.4) ∆IIx = − 1√
LN −M2

[
∂
∂u

(
Nxu−Mxv√
LN−M2

)
− ∂

∂v

(
Mxu−Lxv√
LN−M2

) ]
[1, 2, 12, 13, 16].
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3. Surfaces of Revolution in G3

In the Galilean space G3 there are two types of rotations: Euclidean rotations
given by the normal form

x = x, y = y cos v + z sin v, z = −y sin v + z cos v(3.1)

and isotropic rotations with the normal form

x = x+ ct, y = y + xt+ c
t2

2
, z = z.(3.2)

Then the surface of revolution of Type 1 can be written as

(3.3) x(u, v) = (f(u), g(u) cos v,−g(u) sin v) .

Suppose that α is parametrized by arc-length. In this case, the parametrization of
M is given by

(3.4) x(u, v) = (u, g(u) cos v,−g(u) sin v) .

Next, we consider the isotropic rotations. By rotating the isotropic curve
α(u) = (0, f(u), g(u)) about the z−axis by isotropic rotation (3.2), we obtain the
parametrization of the surface of revolution of Type 2 as

(3.5) x(u, v) =

(
cv, f(u) +

cv2

2
, g(u)

)
,

where f and g are smooth functions and c 6= 0 ∈ R [12].
Finally, we assume, again without loss of generality, that the profile curve

α(u) = (f(u), g(u), 0) lies in the isotropic xy− plane and is parameterized by

(3.6) x(u, v) =

(
f(u) + cv, g(u), vf(u) +

cv2

2

)
,

where f and g are smooth functions and c 6= 0 ∈ R. The surface (3.6) is called the
surface of revolution of Type 3 [12].

4. Surfaces of Revolution of Type 1 Satisfying ∆Ix = Ax

In this section, we classify surface of revolution of Type 1 given in G3 satisfying
the equation

(4.1) ∆Ix = Ax,

where A = (aij) ∈Mat(3, R) and

(4.2) ∆Ixi=
(
∆Ix1,∆

Ix2,∆
Ix3

)
,
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where

(4.3) x1 = u, x2 = g(u) cos v, x3 = −g(u) sin v.

For this surface of revolution, the coefficients of the first and second fundamental
forms are

(4.4)

g1 = 1, g2 = 0, h11 = g′
2

(u), h12 = 0, h22 = g2(u),

L11 = L = −g′′(u), L22 = N = g(u), L12 = M = 0,

E = 1, F = 0, G = g2(u),

respectively. The Gaussian curvature K and the mean curvature H are

(4.5) K = −g
′′(u)

g(u)
, H =

1

2g(u)
.

Corollary 4.1. There are no minimal surfaces of revolution (3.4).

Corollary 4.2. The profile curve of surface of revolution of Type 1 of constant
Gaussian curvature in G3 is as follows:

(1) If K = 1
a2 , then the general solution of the differential equation (4.5) is

g(u) = c1 cos
u

a
+ c2 sin

u

a
,

where c1, c2, a ∈ R.

(2) If K = 0, then the general solution of the differential equation (4.5) is

g(u) = c1u+ c2,

where c1, c2 ∈ R.

The Laplacian operator on M with the help of (2.3), (4.3) and (4.4) turns out
to be

∆Ix =

−g′
g
,

cos v
(

1− g′2 − gg′′
)

g
,−

sin v
(

1− g′2 − gg′′
)

g

 .

Suppose that M satisfies (4.1). Then from (4.2) and (4.3), we have

(4.6)

a11u+ a12g(u) cos v − a13g(u) sin v =− g′

g

a21u+ a22g(u) cos v − a23g(u) sin v =
cos v

(
1− g′2 − gg′′

)
g

a31u+ a32g(u) cos v − a33g(u) sin v =−
sin v

(
1− g′2 − gg′′

)
g
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Since the functions cos v, sin v and the constant function are linearly independent,
by (4.6) we get a12 = a13 = a21 = a23 = a31 = a32 = 0, a11 = λ, a22 = a33 = µ.
Consequently the matrix A satisfies

(4.7) A =

 λ 0 0
0 µ 0
0 0 µ


and (4.6) can be rewritten as

(4.8) λu = −g
′

g
,

(4.9) µg(u) cos v =
cos v

(
1− g′2 − gg′′

)
g

,

(4.10) µg(u) sin v =
sin v

(
1− g′2 − gg′′

)
g

.

From (4.8), (4.9) and (4.10), we obtain

(4.11)

λu = −g
′

g
or g = − g′

λu
, λ 6= 0.

µg(u) =

(
1− g′2 − gg′′

)
g

.

Combining the first and the second equation of (4.11), we obtain

(4.12)
(
λu+

µ

λu

)
g′(u)− λu

g′(u)
− g′′(u) = 0.

If we solve ordinary differential equation (4.12) with Mathematica, we get

(4.13) g(u) = c1 ±
u∫

1

e
λx2

2

√(
c2x

2µ
λ + (λx2)

µ
λ Gamma

[
1− µ

λ
, λx2

])
dx,

where λ 6= 0, µ 6= 0, ci ∈ R. The solution (4.13) does not satisfy (4.8) and (4.9).
Let λ 6= 0, µ = 0, from (4.12), we obtain

(4.14) (λu) g′(u)− λu

g′(u)
− g′′(u) = 0.
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Its general solution is

(4.15) g(u) = c1 ±
u∫

1

√
1 + e2c2+λx2dx,

where c1, c2 ∈ R. The solution (4.15) does not satisfy (4.8) and (4.9). Since λ 6= 0,
there is no harmonic surface of revolution given by (3.4) in the three dimensional
Galilean space G3.

5. Surfaces of Revolution of Type 1 Satisfying ∆IIx = Ax

In this section, we classify surfaces of revolution of Type 1 with non-degenerate
second fundamental form in G3 satisfying the equation

(5.1) ∆IIx = Ax,

where A = (aij) ∈ Mat(3, R). By a straightforward computation, the Laplacian

∆II of the second fundamental form II on M is expressible as

(5.2) ∆IIxi =



(
g′(u)g′′(u)−g(u)g′′′(u)

2g(u)g′′2 (u)

)
cos v

(
g′

2
(u)g′′(u)+4g(u)g′′

2
(u)−g(u)g′(u)g′′′(u)

2g(u)g′′2 (u)

)
− sin v

(
g′

2
(u)g′′(u)+4g(u)g′′

2
(u)−g(u)g′(u)g′′′(u)

2g(u)g′′2 (u)

)
 .

Suppose that M satisfies (5.1). Then from (2.4) and (4.4), we have

(5.3)

a11u+ a12g(u) cos v − a13g(u) sin v =
1

2g′′

(
g′

g
− g′′′

g′′

)
,

a21u+ a22g(u) cos v − a23g(u) sin v = cos v

(
1

2g′′

(
g′

g
− g′′′

g′′

)
+ 2

)
,

a31u+ a32g(u) cos v − a33g(u) sin v = − sin v

(
1

2g′′

(
g′

g
− g′′′

g′′

)
+ 2

)
.

Since the functions cos v, sin v and the constant function are linearly independent,
by (5.3) we get a12 = a13 = a21 = a23 = a31 = a32 = 0 , a11 = λ, a22 = a33 = µ.
Consequently matrix A satisfies

(5.4) A =

 λ 0 0
0 µ 0
0 0 µ

 .
Then the system (5.3) reduces now to the equations

(5.5)
2λug′′

2

= g′g′′ − gg′′′,

−2µg2g′′
2

− 4µgg′′
2

= g′ (g′g′′ − gg′′′) .
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Combining the first and the second equation of (5.5), we get

(5.6) 2− µg + λug′ = 0,

where g 6= 0 and g′′ 6= 0. Its general solution is given by

(5.7) g(u) =
2

µ
+ c1u

µ
λ ,

where c1 ∈ R. The solution (5.7) does not satisfies (5.5). If λ 6= 0, µ = 0, then we
have

(5.8) g(u) = c1 −
2 lnu

λ
.

The solution (5.8) does not satisfies (5.5). Let λ = 0, µ = 0, from (5.6), we have a
contradiction. Consequently, we have:

Theorem 5.1. Let M be a non-isotropic surface of revolution of Type 1 with
non-degenerate second fundamental form given by (3.4) in the three dimensional
Galilean space G3. There is no the surface M satisfying the condition ∆IIx = Ax,
A ∈Mat(3, R).

6. Surfaces of Revolution of Type 1 Satisfying ∆IG = AG

In this section, we classify surfaces of revolution of Type1 in G3 satisfying the
equation

(6.1) ∆IG= AG,

where A = (aij) ∈Mat(3, R).

Theorem 6.1. Let M be a surface of revolution given by (3.4) in the three dimen-
sional Galilean space G3 . Then M satisfies (6.1) if and only if it is an open part
of a cylinder.

Proof. Let M be a surface of revolution generated by a unit speed nonisotropic
curve in G3. Then M is parametrized by

(6.2) x(u, v) = (u, g(u) cos v,−g(u) sin v) .

where g is a positive function. The Gauss map G of M is obtained by

(6.3) G = (0,− cos v, sin v) .

Suppose that M satisfies (6.1). Then from (4.4) and (5.3) we get the system of
differential equations

(6.4)

− a12 cos v + a13 sin v = 0,

− a22 cos v + a23 sin v = −cos v

g2
,

− a32 cos v + a33 sin v =
sin v

g2
.
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In order to prove the theorem we have to solve (6.4). From (6.4) we easily deduce
that

(6.5) a12 = a13 = a21 = a23 = a32 = 0, a22 = a33, a22 = a33 =
1

g2(u)

and

(6.6) ∆IG =
1

g2(u)
G.

From this g(u) is a constant function. Consequently, M is an open part of a cylinder.
It can be easily shown that the converse assertion is also true. 2

Theorem 6.2. There is no surfaces of revolution of Type 1 generated by a non-
isotropic curve in G3 with harmonic Gauss map.

Proof. Let M be a surface of revolution of Type 1 defined by (3.4) in G3. If M
has harmonic Gauss map, that is, M satisfies ∆IG =0, then g−2(u)G = 0. It is
impossible because g(u) is a positive function and G is the unit normal vector field
of M. 2

Theorem 6.3. Let M be a surface of revolution of Type 1 generated by a non-
isotropic curve in the three dimensional Galilean space G3. Then M has point wise
1-type Gauss map of the first kind.

Proof. Let M be a surface of revolution of Type 1 generated by a non-isotropic
curve in G3. Suppose that M has pointwise 1-type Gauss map. Combining (1.5)
and (6.6), one gets F(u) = g−2(u) and C = 0. Thus the Gauss map G of M is of
pointwise 1-type of the first kind. 2

Theorem 6.4. There is no surface of revolution of Type 1 generated by a non-
isotropic curve in G3 with pointwise 1-type Gauss map of the second kind.

Proof. Let M be a surface of revolution of Type 1 defined by (3.4) in G3. By
Theorem 6.3, M has only pointwise 1-type Gauss map of the first kind. Thus, the
theorem is proved. 2

Remark 6.5. We consider a surface defined by

(6.7) x(u, v) =
(
u,
(
a2u+ b2

)
cos v,−

(
a2u+ b2

)
sin v

)
,

where a, b ∈ R and u > − b2

a2 . The surface is a cone satisfying the
(
a2x+ b2

)2
=

y2 + z2. From (6.6) the Laplacian ∆IG of the Gauss map G of the surface is
obtained by

(6.8) ∆IG =
1

(a2u+ b2)
2 G.

Thus, a cone in G3 has pointwise 1-type Gauss map of the first kind.
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7. Surfaces of Revolution of Type 1 Satisfying ∆IIG = AG

In this section, we classify surfaces of revolution of Type 1 in G3 satisfying the
equation

(7.1) ∆IIG= AG,

where A = (aij) ∈Mat(3, R).

Theorem 7.1. There is no non-isotropic surfaces of revolution of Type 1 given by
(4.2) satisfying (7.1) in the three dimensional Galilean space G3.

Proof. Let M be a surface of revolution generated by a unit speed nonisotropic
curve in G3. Suppose that M satisfies (7.1). Then from (4.4) and (5.3) we get the
system of equations

(7.2)

− a12 cos v + a13 sin v = 0,

− a22 cos v + a23 sin v = −cos v

g
,

− a32 cos v + a33 sin v =
sin v

g
.

In order to prove the theorem we have to solve (7.2). From (7.2) we easily deduce
that

a12 = a13 = a21 = a23 = a32 = 0, a22 = a33, a22 =
1

g(u)

and

(7.3) ∆II G =
1

g(u)
G .

From this g(u) is a constant function. For the nondegeneracy of the second funda-
mental form of M, we assume that g′′ is nonvanishing everywhere. If a non-isotropic
surface of revolution of Type 1 satisfies (7.1), then the function g is constant. It is
a contradiction. 2

Theorem 7.2. There is no surfaces of revolution of Type 1 generated by a non-
isotropic curve in G3 with harmonic Gauss map.

Proof. Let M be a surface of revolution of Type 1 defined by (4.1) in G3. If M
has harmonic Gauss map, that is, M satisfies ∆IIG =0, then g−1(u) G = 0. It is
impossible because g(u) is a positive function and G is the unit normal vector field
of M. 2

Theorem 7.3. Let M be a surface of revolution of Type 1 generated by a non-
isotropic curve in the three dimensional Galilean space G3. Then M has point wise
1-type Gauss map of the first kind.

Proof. Let M be a surface of revolution of Type 1 generated by a non-isotropic



596 A. Çakmak, H. Es, M. K. Karacan and S. Kızıltuğ

curve in G3. Suppose that M has pointwise 1-type Gauss map. Combining (1.5)
and (7.3), one gets F(u) = g−1(u) and C = 0. Thus the Gauss map G of M is of
pointwise 1-type of the first kind. 2

Theorem 7.4. There is no surface of revolution of Type 1 generated by a non-
isotropic curve in G3 with pointwise 1-type Gauss map of the second kind.

Proof. Let M be a surface of revolution of Type 1 defined by (4.1) in G3. By
Theorem 7.3, M has only pointwise 1-type Gauss map of the first kind. Thus, the
theorem is proved. 2

Remark 7.5. We consider a surface defined by

(7.4) x(u, v) =
(
u,
(
a2u+ b2

)
cos v,−

(
a2u+ b2

)
sin v

)
,

where a, b ∈ R and u > − b2

a2 . The surface is a cone satisfying the
(
a2x+ b2

)2
=

y2 + z2. From (7.3) the Laplacian ∆IIG of the Gauss map G of the surface is
obtained by

(7.5) ∆II G =
1

(a2u+ b2)
G.

Thus, a cone in G3 has pointwise 1-type Gauss map of the first kind.
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