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ABSTRACT. In this study, we classify surfaces of revolution of Type 1 in the three dimen-
sional Galilean space Ggs in terms of the position vector field, Gauss map, and Laplacian
operator of the first and the second fundamental forms on the surface. Furthermore, we
give a classification of surfaces of revolution of Type 1 generated by a non-isotropic curve
satisfying the pointwise 1-type Gauss map equation.

1. Introduction

Let x : M —E™ be an isometric immersion of a connected n-dimensional man-
ifold in the m-dimensional Euclidean space E™. Denote by H and A the mean
curvature and the Laplacian of M with respect to the Riemannian metric on M
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induced from that of E™, respectively. Takahashi [15] proved that the submanifolds
in E™ satisfying Ax = A\x, that is, for which all coordinate functions are eigen-
functions of the Laplacian with the same eigenvalue A € R, are either the minimal
submanifolds of E™ or the minimal submanifolds of the hypersphere S™~! in E™
[5, 6, 18, 19].

As an extension of Takahashi’s theorem, Garay [11] studied hypersurfaces in E™
whose coordinate functions are eigenfunctions of the Laplacian, but not necessarily
associated to the same eigenvalue. He considered hypersurfaces in E™ satisfying
the condition

(1.1) Ax = Ax,

where A € Mat (m,R) is an m x m diagonal matrix, and proved that such hypersur-
faces are minimal (H = 0) in E™ and are open pieces of either round hyperspheres
or generalized right spherical cylinders.

Related to this, Dillen, Pas and Verstraelen [9] investigated surfaces in E? whose
immersions satisfy the condition

(1.2) Ax = Ax + B,
where A €Mat (3,R) is a 3 x 3 real matrix and B € R3 [5, 6, 18, 19].

The notion of an isometric immersion x is naturally extended to smooth func-
tions on submanifolds of Euclidean space or pseudo-Euclidean space. The most
natural one of them is the Gauss map of the submanifold. In particular, if the
submanifold is a hypersurface, the Gauss map can be identified with its unit nor-
mal vector field. Dillen, Pas and Verstraelen [10] studied surfaces of revolution in
the three dimensional Euclidean space E? such that its Gauss map G satisfies the
condition

(1.3) AG = AG,

where A €Mat (3,R).

In the late 1970’s B.-Y. Chen introduced the notion of Euclidean immer-
sions of finite type. Essentially these are submanifolds whose immersion into the
m—dimensional Euclidean space E™ is constructed by making use of a finite number
of E™-valued eigenfunctions of their Laplacian. The first results on this subject are
collected in the book [3]. In a framework of the theory of finite type, B.-Y. Chen
and P. Piccini [4] made a general study on submanifolds of Euclidean spaces with
finite type Gauss maps. Several geometers also studied submanifolds of Euclidean
spaces or pseudo-Euclidean spaces with finite type Gauss maps [11].

From the above definition one can see that a submanifold has 1-type Gauss map
G if and only if G satisfies the equation

(1.4) AG =\ (G +C)

for a constant A\ and a constant vector C, where A denotes the Laplace operator on
a submanifold. A plane, a circular cylinder and a sphere are surfaces with a 1-type
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Gauss map. Similarly, a submanifold is said to have a pointwise 1-type Gauss map
if the Laplacian of its Gauss map takes the form

(1.5) AG =F (G +C)

for a non-zero smooth function F and a constant vector C. More precisely, a
pointwise 1-type Gauss map is said to be of the first kind if (1.5) is satisfied for
C =0, and of the second kind if C # 0. A helicoid, a catenoid and a right cone are
the typical examples of surfaces with pointwise 1-type Gauss maps [7].

Sipus and Divjak [17] defined surfaces of revolution in the 3-dimensional pseudo-
Galilean space G} and described surfaces of revolution of constant curvature. Yoon
[18, 19] characterized surfaces of revolution in Gi. Dede, Ekici and Goemanse
[8] defined and studied three types of surfaces of revolution in Galilean 3-space.
They classified the surfaces of revolution with vanishing Gaussian curvature or
vanishing mean curvature in Galilean 3-space G3. Choi, Kim and Yoon [6] gave the
classification of surfaces of revolution generated by an isotropic curve satisfying a
pointwise 1-type Gauss map equation. Choi [5] completely classified the surfaces
of revolution satisfying condition (1.3). Karacan, Yoon and Bukcu [13] classified
surfaces of revolution satisfying A'x; = \ix;, J = 1,2 and AT x; = \;x;.

The main purpose of this paper is a complete classification of surfaces of rev-
olution in the three dimensional Galilean space Gg3 in terms of the position vector
field, Gauss map, pointwise 1-type Gauss map equation and Laplacian operators of
the first and the second fundamental forms on the surface.

2. Preliminaries

The Galilean space G3 is a Cayley-Klein space defined from a 3-dimensional
projective space P(R?) with the absolute figure that consists of an ordered triple
{w, f, I}, where w is the ideal (absolute) plane, f is the line (absolute line) in w and I
is the fixed elliptic involution of points of f. We introduce homogeneous coordinates
in (G3 in such a way that the absolute plane w is given by x¢ = 0, the absolute line
f by zg = 21 = 0 and the elliptic involution by (0:0: 29 : x5) — (0:0: z5: —xz2).
In affine coordinates defined by (0: xy : we : x3) — (1: 2 :y: z), distance between
points P; = (x;, yi, ), i = 1,2 is defined by

|ze — z1], if  mF# o
\/(yz — y1)2 + (22 — 21)27 if 1= 2.

The group of motions of G5 is a six-parameter group given (in affine coordinates)
by

(2.1) d(Pr, ) = {

T=a+x, y=b+cx+ycosh+ zsinfh, Z=d+ ex —ysinf + zcos 6.

A Cm-surface S, r > 1, immersed in the Galilean space, x : U — S, U C R?,
x(u,v) = (z(u,v),y(u,v), 2(u,v)), has the following first fundamental form

I=(g1du+ g2dv)2 + € (hndu2 + 2hiodudv + hggd’l}2) ,
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where the symbols g; = x;, hy; = )2;)2; stand for derivatives of the first coordinate
function x(u,v) with respect to w,v and for the Euclidean scalar product of the

projections Xy, of vectors x;, onto the yz-plane, respectively. Furthermore,

. 0, if direction du : dv is non-isotropic,
] 1, if direction du : dv is isotropic.

In every point of a surface there exists a unique isotropic direction defined by
gi1du + godv = 0. In that direction, the arc length is measured by

hi1g2 — 2h hosg? W2
ds? = hyydu® + 2hyodudy + hypdy? = 192 = 220192 T a1 V7

dv?,
9% 91

where g1 # 0.

A surface is called admissible if it has no Euclidean tangent planes. Therefore,
for an admissible surface either g1 # 0 or g # 0 holds. An admissible surface can
always locally be expressed as

z = f(u,v).

The Gaussian K and mean curvature H are C7~2 functions, r > 1, defined by

_ LN — M? Ho g3L —2g1gaM + giN

K
w2 2W?2 ’

where
xlxij — xijxl
Lij = ‘Tin 1 =01 7£ 0.
1

We will use L;j, 4,5 = 1,2, for L, M, N if more convenient. The vector G defines
a normal vector to a surface

G = W (0, —xoz1 + 122, T2y1 — T1Y2) ,

where W2 = (1ox; — x1x2)2 [8, 14].
It is well known in terms of local coordinates {u, v} of M the Laplacian operators
AT and A™ of the first and the second fundamental forms on M are defined by

(2.3) Aly — 1 [8 (Gxu—va)_a(qu EXU>:|
’  VEG-F? |0u \ VEG — F2 Ww\VEG-F2)|’

1,2, 12, 13, 16].
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3. Surfaces of Revolution in G35

In the Galilean space G3 there are two types of rotations: Euclidean rotations
given by the normal form

(3.1) T=ux, §=ycosv+ zsinv, Z= —ysinv + zcosv

and isotropic rotations with the normal form

2
(3.2) f:x+ct,§:y+xt+c§,2:z.

Then the surface of revolution of Type 1 can be written as

(3.3) x(u,v) = (f(u), g(u) cosv, —g(u) sinv) .

Suppose that « is parametrized by arc-length. In this case, the parametrization of
M is given by

(3.4) x(u,v) = (u, g(u) cosv, —g(u) sinv) .

Next, we consider the isotropic rotations. By rotating the isotropic curve
a(u) = (0, f(u),g(u)) about the z—axis by isotropic rotation (3.2), we obtain the
parametrization of the surface of revolution of Type 2 as

55) xtuso) = (eo.f0) + ()

where f and g are smooth functions and ¢ # 0 € R [12].
Finally, we assume, again without loss of generality, that the profile curve
a(u) = (f(u), g(u),0) lies in the isotropic zy— plane and is parameterized by

C'U2
(35) () = ( 7(0) + ev, g, of () + - )

where f and g are smooth functions and ¢ # 0 € R. The surface (3.6) is called the
surface of revolution of Type 3 [12].

4. Surfaces of Revolution of Type 1 Satisfying Alx = Ax

In this section, we classify surface of revolution of Type 1 given in Gg3 satisfying
the equation

(4.1) Alx = Ax,
where A = (a;;) € Mat(3, R) and

(42) AIXi: (AIX1,AIX2,AIX3) )
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where
(4.3) X1 = u, X2 = g(u)cosv, xg = —g(u)sinwv.

For this surface of revolution, the coefficients of the first and second fundamental
forms are

g1 =1,g2=0,h11 = g (u), b1z =0, hoy = g*(u),
(4.4) Ly =L=—-¢"(u), Lyo= N=g(u), Lia=M =0,
E=1, F=0, G=g(u),

respectively. The Gaussian curvature K and the mean curvature H are

1

1

(4.5) K- g_ .
g(u) 29(u)

Corollary 4.1. There are no minimal surfaces of revolution (3.4).

Corollary 4.2. The profile curve of surface of revolution of Type 1 of constant
Gaussian curvature in Gs is as follows:

(1) If K= a%, then the general solution of the differential equation (4.5) is
u LU
g(u) = ¢q cos — + cosin —,
a a
where ¢1,co,a € R.
(2) If K =0, then the general solution of the differential equation (4.5) is

g(u) = cru + ca,

where c1,cy € R.

The Laplacian operator on M with the help of (2.3), (4.3) and (4.4) turns out
to be
2 2
g cosv(lfg’ fgg”) sinv(lfg’ fgg”)

) )

g g g

Alx =

Suppose that M satisfies (4.1). Then from (4.2) and (4.3), we have
a11u + ajag(u) cosv — ayzg(u) sinv = — =
g

CosS v (1 — g’2 — gg”)
(4.6) ag1u + azeg(u) cosv — agzg(u)sinv =

az1u + azag(u) cosv — azzg(u)sinv = —
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Since the functions cosv,sinv and the constant function are linearly independent,
by (46) we get a1 = a13 = Q21 — A3 — A3]1 — 432 — O, ayp = )\70,22 = asz = W.
Consequently the matrix A satisfies

A0 0
(4.7) A=|0 p O
0 0 pu
and (4.6) can be rewritten as
g/
4.8 \u=—=,
(4.8) ;

cos v (1 — g’2 — gg")

(4.9) pug(u) cosv = 7 ,
sinv (1 —g" - gg”)
(4.10) pug(u)sinv = .
g
From (4.8), (4.9) and (4.10), we obtain
!/ /
ci=-L or g:f‘q—, A # 0.
g Au
4.11
( ) » (1 _g/2 _gg//>
ug(u) = ~——-— =~
g

Combining the first and the second equation of (4.11), we obtain

Au

(4.12) (Mt ) g'(w) ~ oo

1
- =0.
S g"(u)

If we solve ordinary differential equation (4.12) with Mathematica, we get

(4.13) g(u) =c £ /€A§¢(CQ$? + (Ax2)% Gamma {1 - %,AxZDdx,
1

where A # 0, 4 # 0, ¢; € R. The solution (4.13) does not satisfy (4.8) and (4.9).
Let A #£ 0, =0, from (4.12), we obtain

(4.14) () g’ (u) — ﬂ

QWYWNMZQ
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Its general solution is

(4.15) g(u) =c1 + / V1 + e2e2tra? g
1

where ¢1, c2 € R. The solution (4.15) does not satisfy (4.8) and (4.9). Since A # 0,
there is no harmonic surface of revolution given by (3.4) in the three dimensional
Galilean space G3.

5. Surfaces of Revolution of Type 1 Satisfying Al'x = Ax

In this section, we classify surfaces of revolution of Type 1 with non-degenerate
second fundamental form in Gs satisfying the equation

(5.1) Ax = Ax,

where A = (a;;) € Mat(3,R). By a straightforward computation, the Laplacian
A of the second fundamental form II on M is expressible as
(g’(u)g”(U)*g(u)g”’(U))
s 29(U)g”2§U)
(52)  Allg = | coso (g/ (u)g”<u)+492<:(>§;;/§;()u—)g<u>g’(u)g”’(u))

2 2
o g~ (Wg" (w)+4g(w)g"” (W) —g(w)g' (w)g"" (u)
S ( 29(u)g" (u) >

Suppose that M satisfies (5.1). Then from (2.4) and (4.4), we have

1 gl g/I/
a1t + arag(u) cosv — arzg(u) sinv = 597 (g - g”) ,

1 g/ g///
(5.3) ag1u + az2g(u) cosv — aszg(u) sinv = cosv (29” (g - g”) + 2) ,

1 g/ g///
az1u + azag(u) cosv — agzg(u) sinv = —sinw (29// <g — g”) + 2) :
Since the functions cos v, sinv and the constant function are linearly independent,
by (5.3) we get a1z = a13 = a21 = a3 = az1 = azz2 = 0, a1 = A, az = azz = p.
Consequently matrix A satisfies

A 0
(5.4) A=1]0 0
0 %

or O

Then the system (5.3) reduces now to the equations

5.5 2)\ug//2 =qgq" — gq",

ron_

2 2
—2ug°g" —Angg” =g (9’9" — 99"").
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Combining the first and the second equation of (5.5), we get

(5.6) 2 — ug + dug’ =0,

where g # 0 and ¢g” # 0. Its general solution is given by
2 u

(5.7) g(u) = M +crux,

where ¢; € R. The solution (5.7) does not satisfies (5.5). If A # 0, p = 0, then we
have
2lnu

(5.8) g(u) =c1 — h\

The solution (5.8) does not satisfies (5.5). Let A = 0, u = 0, from (5.6), we have a
contradiction. Consequently, we have:

Theorem 5.1. Let M be a non-isotropic surface of revolution of Type 1 with
non-degenerate second fundamental form given by (3.4) in the three dimensional
Galilean space Gs. There is no the surface M satisfying the condition AMx = Ax,
A € Mat(3,R).

6. Surfaces of Revolution of Type 1 Satisfying A!G = AG

In this section, we classify surfaces of revolution of Typel in Gg satisfying the
equation

(6.1) AlG= AG,
where A = (a;;) € Mat(3, R).
Theorem 6.1. Let M be a surface of revolution given by (8.4) in the three dimen-

sional Galilean space Gs . Then M satisfies (6.1) if and only if it is an open part
of a cylinder.

Proof. Let M be a surface of revolution generated by a unit speed nonisotropic
curve in G3. Then M is parametrized by

(6.2) x(u,v) = (u, g(u) cosv, —g(u) sinv) .

where g is a positive function. The Gauss map G of M is obtained by

(6.3) G = (0,— cosv,sinv) .

Suppose that M satisfies (6.1). Then from (4.4) and (5.3) we get the system of
differential equations

— a12 €08V + ajzsinv = 0,
CcoS v

— @99 COSV + g3 sinv = — 7

(6.4)
sinv
g2

— @39 COSV + a3z sinv =
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In order to prove the theorem we have to solve (6.4). From (6.4) we easily deduce
that

1
6.5 12 = G13 = Q21 = Qg3 = a32 = 0, ags = a3, G2 = a33 = ———
(6.5) 12 13 21 23 32 22 33, (22 33 72w
and
1
6.6 A'G = G.
(60 P

From this g(u) is a constant function. Consequently, M is an open part of a cylinder.
It can be easily shown that the converse assertion is also true. O

Theorem 6.2. There is no surfaces of revolution of Type 1 generated by a non-
isotropic curve in Gz with harmonic Gauss map.

Proof. Let M be a surface of revolution of Type 1 defined by (3.4) in Gz. If M
has harmonic Gauss map, that is, M satisfies AIG =0, then g~ 2(u)G = 0. It is

impossible because g(u) is a positive function and G is the unit normal vector field
of M. O

Theorem 6.3. Let M be a surface of revolution of Type 1 generated by a non-
isotropic curve in the three dimensional Galilean space Gs. Then M has point wise
1-type Gauss map of the first kind.

Proof. Let M be a surface of revolution of Type 1 generated by a non-isotropic
curve in G3. Suppose that M has pointwise 1-type Gauss map. Combining (1.5)
and (6.6), one gets F(u) = g~ 2(u) and C = 0. Thus the Gauss map G of M is of
pointwise 1-type of the first kind. O

Theorem 6.4. There is no surface of revolution of Type 1 generated by a non-
isotropic curve in Gz with pointwise 1-type Gauss map of the second kind.

Proof. Let M be a surface of revolution of Type 1 defined by (3.4) in Gs. By
Theorem 6.3, M has only pointwise 1-type Gauss map of the first kind. Thus, the
theorem is proved. O

Remark 6.5. We consider a surface defined by
(6.7) x(u,v) = (u, (a®u+b?) cosv, — (a®u + b?) sinv),

where g, b € R and u > —%. The surface is a cone satisfying the (a?z + b2)

y? + 22, From (6.6) the Laplaman A!G of the Gauss map G of the surface is
obtained by

1

6.8 ANlG=——
(68) (a2u + b2)*

Thus, a cone in G3 has pointwise 1-type Gauss map of the first kind.
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7. Surfaces of Revolution of Type 1 Satisfying A'G = AG

In this section, we classify surfaces of revolution of Type 1 in Gg3 satisfying the
equation

(7.1) AG= AG,

where A = (a;;) € Mat(3, R).

Theorem 7.1. There is no non-isotropic surfaces of revolution of Type 1 given by
(4.2) satisfying (7.1) in the three dimensional Galilean space Gs.

Proof. Let M be a surface of revolution generated by a unit speed nonisotropic
curve in G3. Suppose that M satisfies (7.1). Then from (4.4) and (5.3) we get the
system of equations

— a12c08v + agsinv =0,

n . CcosS v
— 929 COSV 23 SINV = —
(7.2) g

sin v

— a32 COSV + agzsinv =

In order to prove the theorem we have to solve (7.2). From (7.2) we easily deduce

that
1
a12 = a1z = az1 = a3 = azz = 0, ase = asz, azx = ——

g(u)
and

mg__ b
(7.3) AlG =5 G

From this g(u) is a constant function. For the nondegeneracy of the second funda-
mental form of M, we assume that ¢” is nonvanishing everywhere. If a non-isotropic
surface of revolution of Type 1 satisfies (7.1), then the function g is constant. It is
a contradiction. ]

Theorem 7.2. There is no surfaces of revolution of Type 1 generated by a non-
isotropic curve in Gz with harmonic Gauss map.

Proof. Let M be a surface of revolution of Type 1 defined by (4.1) in Gs. If M
has harmonic Gauss map, that is, M satisfies A"G =0, then g~ !(u) G = 0. It is
impossible because g(u) is a positive function and G is the unit normal vector field
of M. O

Theorem 7.3. Let M be a surface of revolution of Type 1 generated by a non-
isotropic curve in the three dimensional Galilean space Gs. Then M has point wise
1-type Gauss map of the first kind.

Proof. Let M be a surface of revolution of Type 1 generated by a non-isotropic
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curve in Gs. Suppose that M has pointwise 1-type Gauss map. Combining (1.5)
and (7.3), one gets F(u) = g~!(u) and C = 0. Thus the Gauss map G of M is of
pointwise 1-type of the first kind. O

Theorem 7.4. There is no surface of revolution of Type 1 generated by a non-
isotropic curve in Gz with pointwise 1-type Gauss map of the second kind.

Proof. Let M be a surface of revolution of Type 1 defined by (4.1) in Gs. By
Theorem 7.3, M has only pointwise 1-type Gauss map of the first kind. Thus, the
theorem is proved. O

Remark 7.5. We consider a surface defined by
(7.4) x(u,v) = (u, (a®u + b*) cosv, — (a®u + b*) sinv)

where a,b € R and u > —2—2. The surface is a cone satisfying the (a?z + 62)2 =
y? + 22, From (7.3) the Laplacian AMG of the Gauss map G of the surface is
obtained by

1

11 —
(7.5) AN G =

Thus, a cone in G3 has pointwise 1-type Gauss map of the first kind.
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