DOI QR코드

DOI QR Code

Effect of Coagulant Type on the Silica Dispersion and Properties of Functionalized RAFT ESBR Silica Wet Masterbatch

  • Kim, Woong (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Ryu, Gyeongchan (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Hwang, Kiwon (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Song, Sanghoon (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Kim, Wonho (Department of Polymer Science & Chemical Engineering, Pusan National University)
  • Received : 2020.06.08
  • Accepted : 2020.07.13
  • Published : 2020.09.30

Abstract

Various studies have been conducted to improve silica dispersion of silica filled tire tread compounds; among them, silica wet masterbatch (WMB) technology is known to be suitable for manufacturing silica filled compounds that have high silica content and high dispersibility. Till now, the WMB study is focused on the natural rubber (NR) or emulsion styrene-butadiene rubber (ESBR) that does not have a silica-affinity functional group, and a study of NR or ESBR having a silica-affinity functional group is still not well known. Unlike the dry masterbatch technology, the WMB technology can solve the problems associated with the high Mooney viscosity when applied to silica-friendly rubber. However, a coagulant suitable for each functional group has not yet been determined. Therefore, in this study, different coagulant applied silica WMB was prepared by applying calcium chloride, sulfuric acid, acetic acid, and propionic acid by using a carboxyl group functionalized reversible addition fragmentation chain transfer ESBR. The evaluation of the WMB compounds revealed that the calcium chloride added WMB compound showed excellent silica dispersion, abrasion resistance, and rolling resistance.

Keywords

References

  1. P. Thaptong, P. Sae‐Oui, and C. Sirisinha, "Effects of silanization temperature and silica type on properties of silica‐filled solution styrene butadiene rubber (SSBR) for passenger car tire tread compounds", J. Appl. Polym. Sci., 133, 17 (2016).
  2. S. Mihara, R. N. Datta, and J. W. Noordermeer, "Flocculation in silica reinforced rubber compounds", Rubber Chem. Technol., 82, 5 (2009).
  3. K. Kim, B. Seo, J. Lee, B. Choi, G. Kwag, H. Paik, and W. Kim, "Reduced filler flocculation in the silica-filled styrenebutadiene-glycidyl methacrylate terpolymer", Composite Interfaces, 22, 2 (2015).
  4. S. Jang, W. Kim, Y. Kang, M. Han, and S. Chang, "Study on mixing condition of the rubber composite containing functionalized S-SBR, silica and silane: I. Effect of mixing temperature", Elast. Compo., 48, 2 (2013). https://doi.org/10.7473/EC.2013.48.1.2
  5. Y. Wang, L. Liao, J. Zhong, D. He, K. Xu, C. Yang, Y. Luo, and Z. Peng, "The behavior of natural rubber-epoxidized natural rubber-silica composites based on wet masterbatch technique", J. Appl. Polym. Sci., 133, 26 (2016).
  6. W. Kim, B. Ahn, H. Mun, E. Yu, K. Hwang, and W. Kim, "Evaluation of BR Blending Methods for ESBR/silica Wet Masterbatch Compounds", Elast. Compo., 52, 4 (2017).
  7. Y. Gui, J. Zheng, X. Ye, D. Han, M. Xi, and L. Zhang, "Preparation and performance of silica/SBR masterbatches with high silica loading by latex compounding method", Composites Part B: Engineering, 85, 130 (2016). https://doi.org/10.1016/j.compositesb.2015.07.001
  8. H. Luginsland and C. Roben, "The development of sulphurfunctional silanes as coupling agents in silica-reinforced rubber compounds. Their historical development over several decades", Int. Polym. Sci. Technol., 43, 4 (2016).
  9. D. J. Lowe, A. V. Chapman, S. Cook, and J. J. Busfield, "Studying NR/Organo-montmorillonite Nanocomposites with Silane Coupling Agents Via Network Visualization TEM", Rubber Chem. Technol., 86, 4 (2013).
  10. A. H. Petersen, U.S. patent 1611278 (1926).
  11. W. Kim, S. H. Jang, Y. G. Kang, M. H. Han, K. Hyun, and W. Kim, "Morphology and dynamic mechanical properties of styrene-butadiene rubber/silica/organoclay nanocomposites manufactured by a latex method", J. Appl. Polym. Sci., 128, 4 (2013).
  12. J. Yang, M. Tian, Q. Jia, J. Shi, L. Zhang, S. Lim, Z. Yu, and Y. Mai, "Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding", Acta Materialia, 55, 18 (2007).
  13. Z. Peng, C. Feng, Y. Luo, Y. Li, and L. X. Kong, "Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques", Carbon, 48, 15 (2010).
  14. S. Prasertsri and N. Rattanasom, "Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: Mechanical and dynamic properties", Polym. Test., 31, 5 (2012).
  15. W. Kim, E. Yu, G. Ryu, D. Kim, C. Ryu, Y. Seo, and W. Kim, "Silica dispersion and properties of silica filled ESBR/BR/NR ternary blend composites by applying wet masterbatch technology", Polym. Test., 84, 106350 (2020). https://doi.org/10.1016/j.polymertesting.2020.106350
  16. K. Hwang, W. Kim, B. Ahn, H. Mun, E. Yu, D. Kim, G. Ryu, and W. Kim, "Effect of surfactant on the physical properties and crosslink density of silica filled ESBR compounds and carbon black filled compounds", Elast. Compo., 53, 2 (2018).
  17. W. Kim, B. Ahn, H. Mun, E. Yu, K. Hwang, D. Kim, G. Ryu, and W. Kim, "Effect of Calcium Chloride as a Coagulant on the Properties of ESBR/silica Wet Masterbatch Compound", Polymers, 10, 10 (2018). https://doi.org/10.3390/polym10010010
  18. D. M. French, "Functionally terminated butadiene polymers", Rubber Chem. Technol., 42, 1 (1969). https://doi.org/10.5254/1.3539211
  19. S. Krishnan, R. Alex, and T. Kurian, "HAF/silica/Nanoclay Ternary Masterbatch and HAF/silica binary masterbatch from fresh natural rubber latex", Rubber Chem. Technol., 87, 2 (2014).
  20. H. Wang and J. E. Gillott, "Mechanism of alkali-silica reaction and the significance of calcium hydroxide", Cem. Concr. Res., 21, 4 (1991).
  21. S. Choi, "Difference in bound rubber formation of silica and carbon black with styrene‐butadiene rubber", Polym. Adv. Technol., 13, 6 (2002). https://doi.org/10.1002/pat.99
  22. L. Karasek and M. Sumita, "Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites", J. Mater. Sci., 31, 2 (1996).
  23. S. Choi, "Influence of the silica content on rheological behaviour and cure characteristics of silica‐filled styrene-butadiene rubber compounds", Polym. Int., 50, 5 (2001). https://doi.org/10.1002/1097-0126(200101)50:1<5::AID-PI653>3.0.CO;2-2
  24. M. Wang, "Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates", Rubber Chem. Technol., 71, 3 (1998). https://doi.org/10.5254/1.3538492
  25. K. Kim, J. Lee, B. Choi, B. Seo, G. Kwag, H. Paik, and W. Kim, "Styrene-butadiene-glycidyl methacrylate terpolymer/silica composites: dispersion of silica particles and dynamic mechanical properties", Compos. Interface., 21, 8 (2014).
  26. C. G. Robertson, C. J. Lin, M. Rackaitis, and C. M. Roland, "Influence of particle size and polymer-filler coupling on viscoelastic glass transition of particle-reinforced polymers", Macromolecules, 41, 7 (2008).
  27. M. Wang, P. Zhang, and K. Mahmud, "Carbon-silica dual phase filler, a new generation reinforcing agent for rubber: Part IX. Application to truck tire tread compound", Rubber Chem. Technol., 74, 1 (2001). https://doi.org/10.5254/1.3547636