DOI QR코드

DOI QR Code

Catalytic Reduction of ortho- and meta-Nitroaniline by Nickel Oxide Nanoparticles

  • Jeon, Sugyeong (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Jeong Won (Nanomaterials Research Institute, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
  • Received : 2020.07.14
  • Accepted : 2020.08.02
  • Published : 2020.09.30

Abstract

Nickel oxide (NiO) nanoparticles were synthesized by a reaction of nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and sodium hydroxide (NaOH). The synthesized NiO nanoparticles were examined with X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy. The NiO nanoparticles were used as the catalyst for the reduction of o- and m-nitroaniline to phenylenediamine. The reduction rate of m-nitroaniline was faster than that of o-nitroaniline. The reduction rate for both o- and m-nitroaniline increased as the reaction temperature increased. The rate of reduction for nitroaniline followed a pseudo first-order reaction rate law.

Keywords

References

  1. M. T. Amouzadeh, M. Shamsipur, R. Saber and S. Sarkar, U. S. patent 0062185 (2019).
  2. K. Zhang, H. Li, X. Xu, and H. Yu, "Synthesis of reduced graphene oxide/NiO nanocomposites for the removal of Cr(VI) from aqueous water by adsorption", Microporous Mesoporous Mater., 255, 7 (2018). https://doi.org/10.1016/j.micromeso.2017.07.037
  3. K. Naseem, R. Begum, and Z. H. Farooqi, "Catalytic reduction of 2-nitroaniline: a review. Environmental Science and Pollution Research", Environ. Sci. Pollut. Res., 24, 6446 (2017). https://doi.org/10.1007/s11356-016-8317-2
  4. D. B. Jirekar, M. Ubale, and M. Farooqui, "Evaluation of Adsorption Capacity of Low-Cost Adsorbent for the Removal of Congo Red Dye from Aqueous Solution", Orbital: Electron. J. Chem., 8, 282 (2016).
  5. Z. H. Farooqi, K. Naseem, R. Begum, and A. Ijaz, "Catalytic Reduction of 2-Nitroaniline in Aqueous Medium Using Silver Nanoparticles Functionalized Polymer Microgels", J. Inorg. Organomet. Polym. Mater., 25, 1554 (2015). https://doi.org/10.1007/s10904-015-0275-5
  6. A. Aslani, V. Oroojpour, and M. Fallahi, "Sonochemical syn-thesis, size controlling and gas sensing properties of NiO nanoparticles", Appl. Surf. Sci., 257, 4056 (2011). https://doi.org/10.1016/j.apsusc.2010.11.174
  7. V. S. R. Channu, R. Holze, and B. Rambabu, "Synthesis and characterization of NiO nanoparticles for electrochemical applications", Colloids Surf. A Physicochem. Eng. Asp., 414, 204 (2012). https://doi.org/10.1016/j.colsurfa.2012.08.023
  8. G. Jayakumar, A. A. Irudayaraj, and A. D. Raj, "Photocatalytic Degradation of Methylene Blue by Nickel Oxide Nanoparticles", Mater. Today: Proc., 4, 11690 (2017). https://doi.org/10.1016/j.matpr.2017.09.083
  9. X. Wan, M. Yuan, S. Tie, and S. Lan, "Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue", Appl. Surf. Sci., 277, 40 (2013). https://doi.org/10.1016/j.apsusc.2013.03.126
  10. N. N. M. Zorkipli, N. H. H. Kaus, and A. A. Mohamad, "Synthesis of NiO Nanoparticles through Sol-gel Method", Procedia Chem., 19, 626 (2016). https://doi.org/10.1016/j.proche.2016.03.062
  11. H. Wu, Y. Wang, C. Zheng, J. Zhu, G. Wu, and X. Li, "Multishelled NiO hollow spheres: Easy hydrothermal synthesis and lithium storage performances", J. Alloys Compd., 685, 8 (2016). https://doi.org/10.1016/j.jallcom.2016.05.264
  12. S. J. Musevi, A. Aslani, H. Motahari, and H. Salimi, "Offer a novel method for size appraise of NiO nanoparticles by PL analysis: Synthesis by sonochemical method", J. Saudi Chem. Soc., 20, 245 (2016). https://doi.org/10.1016/j.jscs.2012.06.009
  13. K. Karthik, G. K. Selvan, M. Kanagaraj, S. Arumugam, and N. V. Jaya, "Particle size effect on the magnetic properties of NiO nanoparticles prepared by a precipitation method", J. Alloys Compd., 509, 181 (2011). https://doi.org/10.1016/j.jallcom.2010.09.033
  14. K. Anandan and V. Rajendran, "Effects of Mn on the magnetic and optical properties and photocatalytic activities of NiO nanoparticles synthesized via the simple precipitation process", Mater. Sci. Eng. B, 199, 48 (2015). https://doi.org/10.1016/j.mseb.2015.04.015
  15. A. C. Gandhi, J. Pant, S. D. Pandit, S. K. Dalimbkar, T. S. Cha, C. L. Cheng, Y. R. Ma, and S. Y. Wu. "Short-Range Magnon Excitation in NiO Nanoparticles", J. Phys. Chem. C, 117, 18666 (2013). https://doi.org/10.1021/jp4029479
  16. H. Ullah, L. Mushtaq, Z. Ullah, M. A. Bangesh, and M. Nawaz, "Cost effective green synthesis of NiO nanostructures as highly efficient photocatalysts for degradation of organic dyes", Micro Nano Lett., 14, 103 (2019). https://doi.org/10.1049/mnl.2018.5106
  17. A. Rahdar, M. Aliahmadb, and Y. Azizib, "NiO Nanoparticles: Synthesis and Characterization", J. Nanostruct., 5, 145 (2015).
  18. G. George and S. Anandhan, "Synthesis and characterisation of nickel oxide nanofibre webs with alcohol sensing characteristics", RSC Adv., 4, 62009 (2014). https://doi.org/10.1039/C4RA11083H
  19. B. T. Sone, X. G. Fuku, and M. Maaza, "Physical & Electrochemical Properties of Green Synthesized Bunsenite NiO Nanoparticles via Callistemon Viminalis' Extracts", Int. J. Electrochem. Sci., 11, 8204 (2016).
  20. L. Jia, W. Zhang, J. Xu, J. Cao, Z. Xu, and Y. Wang, "Facile Fabrication of Highly Active Magnetic Aminoclay Supported Palladium Nanoparticles for the Room Temperature Catalytic Reduction of Nitrophenol and Nitroanilines", Nanomaterials, 8, 409 (2018). https://doi.org/10.3390/nano8060409
  21. B. Naik, S. Hazra, V. S. Prasad, and N. N. Ghosh, "Synthesis of Ag nanoparticles within the pores of SBA-15: An efficient catalyst for reduction of 4-nitrophenol", Catal. Commun., 12, 1104 (2011). https://doi.org/10.1016/j.catcom.2011.03.028
  22. R. Vijayan, S. Joseph, and B. Mathew, "Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties", Artif. Cells Nanomed. Biotechnol., 46, 861 (2017).
  23. M. A. Bhosale, D. R. Chenna, and B. M. Bhanage, "Ultrasound Assisted Synthesis of Gold Nanoparticles as an Efficient Catalyst for Reduction of Various Nitro Compounds", Chemistry Select, 2, 1225 (2017).
  24. T. Aditya, J. Jana, N. K. Singh, A. Pal, and T. Pal, "Remarkable Facet Selective Reduction of 4-Nitrophenol by Morphologically Tailored (111) Faceted $Cu_2O$ Nanocatalyst", ACS Omega, 2, 1968 (2017). https://doi.org/10.1021/acsomega.6b00447
  25. J. Sun, Y. Fu, G. He, X. Sun, and X. Wang, "Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/ graphene nanocomposite", Catal. Sci. Technol., 4, 1742 (2014). https://doi.org/10.1039/C4CY00048J
  26. T. Aditya, J. Jana, A. Pal, and T. Pal, "One-Pot Fabrication of Perforated Graphitic Carbon Nitride Nanosheets Decorated with Copper Oxide by Controlled Ammonia and Sulfur Trioxide Release for Enhanced Catalytic Activity", ACS Omega, 3, 9318 (2018). https://doi.org/10.1021/acsomega.8b00968
  27. N. Sahiner, S. Sagbas, and N. Aktas, "Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(tannic acid)-Cu ionic liquid composites", RSC Adv., 5, 18183 (2015). https://doi.org/10.1039/C5RA00126A
  28. N. Sahiner, A. Kaynak, and S. Butun, "Soft hydrogels for dual use: Template for metal nanoparticle synthesis and a reactor in the reduction of nitrophenols", J. Non. Cryst. Solids, 358, 758 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.12.022
  29. P. Ptacek, F. Soukal, and T. Opravil, "Introducing the Effective Mass of Activated Complex and the Discussion on the Wave Function of This Instanton", ed by P. Ptacek, F. Soukal and T. Opravil, p.27-46, IntechOpen Publishers, London, 2018.
  30. S. Butun and N. Sahiner, "A versatile hydrogel template for metal nano particle preparation and their use in catalysis", Polymer, 52, 4834 (2011). https://doi.org/10.1016/j.polymer.2011.08.021
  31. J. A. Tanna, R. G. Chaudhary, N. V. Gandhare, A.R. Rai, and H. D. Juneja, "Nickel oxide nanoparticles: Synthesis, characterization and recyclable catalyst", Int. J. Eng. Res., 6, 93 (2015).
  32. M. A. Nasseri, F. Ahrari, and B. Zakerinasab, "Nickel oxide nanoparticles: a green and recyclable catalytic system for the synthesis of diindolyloxindole derivatives in aqueous medium" RSC Adv., 5, 13901 (2015). https://doi.org/10.1039/C4RA14551H
  33. K. H. Liew, T. K. Lee, M. A. Yarmo, K. S. Loh, A. F. Peixoto, C. Freire, and R. M. Yusop, "Ruthenium Supported on Ionically Cross-linked Chitosan-Carrageenan Hybrid $MnFe_2O_4$ Catalysts for 4-Nitrophenol Reduction", Catalysts, 9, 254 (2019). https://doi.org/10.3390/catal9030254