DOI QR코드

DOI QR Code

Development of Digital-Image-Correlation Technique for Detecting Internal Defects in Simulated Specimens of Wind Turbine Blades

풍력 블레이드 모의 시편의 내부 결함 검출을 위한 이미지 상관법 기술 개발

  • Hong, Kyung Min (Division of Electronics Engineering, Jeonbuk National University) ;
  • Park, Nak Gyu (Division of Mechanical Design Engineering, Jeonbuk National University)
  • Received : 2020.07.03
  • Accepted : 2020.07.23
  • Published : 2020.10.25

Abstract

In the performance of a wind turbine system, the blades play a vital role. However, they are susceptible to damage arising from complex and irregular loading (which may even cause catastrophic collapse), and they are expensive to maintain. Therefore, it is very important both to find defects after blade manufacturing is completed and to find damage after the blade is used for a certain period of time. This study provides a new perspective for the detection of internal defects in glass-fiber- and carbon-fiber-reinforced panels, which are used as the main materials in wind turbine blades. A gap or fracture between fiber-reinforced materials, which may occur during blade manufacturing or operation, is simulated by drilling a hole 5 mm in diameter in the middle layer of the laminated material. Then, a digital-image-correlation (DIC) method is used to detect internal defects in the blade. Tensile load is applied to the fabricated specimen using a tensile tester, and the generated changes are recorded and analyzed with the DIC system. In the glass-fiber-reinforced laminated specimen, internal defects were detected from a strain value of 5% until the end of the experiment, while in the case of the carbon-fiber-reinforced laminated specimen, internal defects were detected from 1% onward. It was proved using the DIC system that the defect was detected as a certain level of strain difference developed around the internal defects, according to the material properties.

풍력 터빈 시스템의 성능에서 블레이드는 매우 중요한 역할을 하지만 복잡하고 불규칙적인 하중에 의한 손상에 취약하며 유지 보수 비용도 많이 든다. 따라서 블레이드 제조를 완료한 후에 결함을 찾아내고 일정 기간 사용한 후에 블레이드 손상을 찾아내는 것이 매우 중요하다. 본 연구에서는 풍력 터빈 블레이드의 주재료인 유리섬유와 탄소섬유 패널에서 내부 결함을 검출할 수 있는 새로운 방법을 제안하고자 한다. 블레이드 제조 또는 작동 중에 발생할 수 있는 복합재료의 섬유 파단을 모사하기 위해 적층된 재료의 중간층에 직경 5 mm의 홀을 가공한 후에, 비접촉 측정 기술인 이미지 상관법(digital image correlation, DIC)을 사용하여 내부 결함을 검출하였다. 인장시험기를 사용하여 가공된 시편에 인장 하중을 가하면서 이미지 상관법 시스템으로 변화되는 시편의 이미지를 저장하고 분석하였다. 유리섬유 복합재료 시편에서는 인장 하중 방향으로 5%의 변형률부터 내부 결함이 검출되었으며 탄소섬유의 경우에는 1%의 변형률부터 내부 결함이 검출되었다. 재료 특성에 따라 내부 결함 주변에 일정 수준의 변형률 차이가 발생함에 따라 결함이 검출됨을 이미지 상관법 시스템으로 증명하였다.

Keywords

References

  1. A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, "A review on small scale wind turbines," Renewable Sustainable Energy Rev. 56, 1351-1371 (2016). https://doi.org/10.1016/j.rser.2015.12.027
  2. H. D. M. de Azevedo, A. M. Araujo, and N. Bouchonneau, "A review of wind turbine bearing condition monitoring: state of the art and challenges," Renewable Sustainable Energy Rev. 56, 368-379 (2016). https://doi.org/10.1016/j.rser.2015.11.032
  3. X. Chen, R. Yan, and Y. Liu, "Wind turbine condition monitoring and fault diagnosis in China," IEEE Instrum. Meas. Mag. 19, 22-28 (2016).
  4. M. Fatehi, M. Nili-Ahmadabadi, O. Nematollahi, A. Minaiean, and K. C. Kim, "Aerodynamic performance improvement of wind turbine blade by cavity shape optimization," Renewable Energy 132, 773-785 (2019). https://doi.org/10.1016/j.renene.2018.08.047
  5. S. Steve, R. Klaus, and H. Kenneth, Global Wind Report -Annual Market Update 2017 (14 February 2018), Distributed by Global Wind Energy Council. https://gwec.net/wp-content/uploads/vip/GWEC_PRstats2017_EN-003_FINAL.pdf.
  6. W. Yang, P. J. Tavner, C. J. Crabtree, Y. Feng, and Y. Qiu, "Wind turbine condition monitoring: technical and commercial challenges," Wind Energy 17, 673-693 (2014). https://doi.org/10.1002/we.1508
  7. J. Chen, Q. Wang, W. Z. Shen, X. Pang, S. Li, and X. Guo, "Structural optimization study of composite wind turbine blade," Mater. Des. 46, 247-255 (2013). https://doi.org/10.1016/j.matdes.2012.10.036
  8. X. Chen, X. Zhao, and J. Xu, "Revisiting the structural collapse of a 52.3 m composite wind turbine blade in a full-scale bending test," Wind Energy 20, 1111-1127 (2017). https://doi.org/10.1002/we.2087
  9. J. Zhang, L. Guo, H. Wu, A. Zhou, D. Hu, and J. Ren, "The influence of wind shear on vibration of geometrically nonlinear wind turbine blade under fluid-structure interaction," Ocean Eng. 84, 14-19 (2014). https://doi.org/10.1016/j.oceaneng.2014.03.017
  10. J.-S. Chou, C.-K. Chiu, I.-K. Huang, and K.-N. Chi, "Failure analysis of wind turbine blade under critical wind loads," Eng. Failure Anal. 27, 99-118 (2013). https://doi.org/10.1016/j.engfailanal.2012.08.002
  11. W. Y. Liu, B. P. Tang, J. G. Han, X. N. Lu, N. N. Hu, and Z. Z. He, "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable Sustainable Energy Rev. 44, 466-472 (2015). https://doi.org/10.1016/j.rser.2014.12.005
  12. N. Beganovic and D. Soffker, "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results," Renewable Sustainable Energy Rev. 64, 68-83 (2016). https://doi.org/10.1016/j.rser.2016.05.083
  13. F. X. Ochieng, C. M. Hancock, G. W. Roberts, and J. L. Kernec, "A review of ground-based radar as a noncontact sensor for structural health monitoring of in-field wind turbines blades," Wind Energy 21, 1435-1449 (2018). https://doi.org/10.1002/we.2252
  14. D. Li, S.-C. M. Ho, G. Song, L. Ren, and H. Li, "A review of damage detection methods for wind turbine blades," Smart Mater. Struct. 24, 033001 (2015). https://doi.org/10.1088/0964-1726/24/3/033001
  15. R. Raisutis, E. Jasiuniene, R. Sliteris, and A. Vladisauskas, "The review of non-destructive testing techniques suitable for inspection of the wind turbine blades," Ultrasound 63, 26-30 (2008).
  16. I. Amenabar, A. Mendikute, A. Lopez-Arraiza, M. Lizaranzu, and J. Aurrekoetxea, "Comparison and analysis of nondestructive testing techniques suitable for delamination inspection in wind turbine blades," Composites Part B 42, 1298-1305 (2011). https://doi.org/10.1016/j.compositesb.2011.01.025
  17. B. Pan, K. Qian, H. Xie, and A. Asundi, "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review," Meas. Sci. Technol. 20, 062001 (2009). https://doi.org/10.1088/0957-0233/20/6/062001
  18. J. D. Helm, "Digital image correlation for specimens with multiple growing cracks," Exp. Mech. 48, 753-762 (2008). https://doi.org/10.1007/s11340-007-9120-2
  19. J. Abanto-Bueno and J. Lambros, "Investigation of crack growth in functionally graded materials using digital image correlation," Eng. Fract. Mech. 69, 1695-1711 (2002). https://doi.org/10.1016/S0013-7944(02)00058-9
  20. B. Pan, W. Dafang, and X. Yong, "Incremental calculation for large deformation measurement using reliability-guided digital image correlation," Opt. Lasers Eng. 50, 586-592 (2012). https://doi.org/10.1016/j.optlaseng.2011.05.005
  21. H. Shi, H. Ji, G. Yang, and X. He, "Shape and deformation measurement system by combining fringe projection and digital image correlation," Opt. Lasers Eng. 51, 47-53 (2013). https://doi.org/10.1016/j.optlaseng.2012.07.020
  22. H.-S. Kim, D. Tserendolgor, D.-S. Kim, H.-C. Lee, and S.-H. Kim, "Automatic alignment of a collimating mirror by using phase image correlatio," Korean J. Opt. Photon. 22, 30-34 (2011). https://doi.org/10.3807/KJOP.2011.22.1.030
  23. Y.-S. Kim and T. Kim, "Evaluation of the speckle noise in optical scanning holography," Korean J. Opt. Photon. 25, 142-145 (2014). https://doi.org/10.3807/KJOP.2014.25.3.142