DOI QR코드

DOI QR Code

Adiabatic Optical-fiber Tapers for Efficient Light Coupling between Silicon Waveguides and Optical Fibers

실리콘 도파로와 광섬유 사이의 효율적인 광 결합을 위한 아디아바틱 광섬유 테이퍼

  • Son, Gyeongho (School of Electrical Engineering, Korea Advanced Institute of Science and Technology,) ;
  • Choi, Jiwon (School of Electrical Engineering, Korea Advanced Institute of Science and Technology,) ;
  • Jeong, Youngjae (School of Electrical Engineering, Korea Advanced Institute of Science and Technology,) ;
  • Yu, Kyoungsik (School of Electrical Engineering, Korea Advanced Institute of Science and Technology,)
  • 손경호 (한국과학기술원 전기및전자공학부) ;
  • 최지원 (한국과학기술원 전기및전자공학부) ;
  • 정영재 (한국과학기술원 전기및전자공학부) ;
  • 유경식 (한국과학기술원 전기및전자공학부)
  • Received : 2020.07.20
  • Accepted : 2020.08.06
  • Published : 2020.10.25

Abstract

In this study we report a wet-etching-based fabrication method for adiabatic optical-fiber tapers (OFTs), and describe their adiabaticity and HE11 mode evolution at a wavelength of 1550 nm. The profile of the fabricated system satisfies the adiabaticity properties well, and the far-field pattern from the etched OFT shows that the fundamental HE11 mode is maintained without a higher-order mode coupling throughout the tapers. In addition, the measured far-field pattern agrees well with the simulated result. The proposed adiabatic OFTs can be applied to a number of photonic applications, especially fiber-chip packages. Based on the fabricated adiabatic OFT structures, the optical transmission to the inversely tapered silicon waveguide shows large spatial-dimensional tolerances for 1 dB excess loss of ~60 ㎛ (silicon waveguide angle of 1°) and insertion loss of less than 0.4 dB (silicon waveguide angle of 4°), from the numerical simulation. The proposed adiabatic coupler shows the ultrabroadband coupling efficiency over the O- and C-bands.

본 논문에서는 아디아바틱(adiabatic) 광섬유 테이퍼의 습식 식각 기반 제조 방법에 대해 보고하고 1550 nm 파장에서의 아디아바틱 성질 및 테이퍼드 광섬유에서 HE11 모드의 전개에 대해 설명하고자 한다. 제조한 결과물은 아디아바틱 성질을 잘 만족하며 far field 패턴 측정 결과로부터 테이퍼 전체에 걸쳐 고차 모드 커플링 없이 기본 HE11 모드가 유지되는 것을 보여준다. 측정한 far field 패턴의 경우에 시뮬레이션 결과와 잘 일치하는 것을 검증하였고, 테이퍼드 광섬유는 다수의 광자 응용에 적용할 수 있으며 특히 광섬유-칩 패기지에 적용할 수 있다. 시뮬레이션을 통해서 제작한 아디아바틱 광섬유 테이퍼를 모델링한 후 역방향 테이퍼드 실리콘 도파관 사이의 광 전송률 시뮬레이션을 살펴보았을 때, 1 dB 초과 손실(실리콘 도파관 각도 1°)이 약 ~60 ㎛ 길이라는 여유있는 공간 치수 공차를 보이며, 0.4 dB 미만의 삽입 손실(실리콘 도파관 각도 4°)을 보인다. 또한, 본 연구자들이 제시하는 아디아바틱 커플러가 O 밴드 및 C 밴드 대역을 넘어, 초 광대역 결합 효율 가능성을 보이는 것을 확인하였다.

Keywords

References

  1. T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletic, and M. D. Lukin, "Efficient fiber-optical interface for nanophotonic devices," Optica 2, 70-75 (2015). https://doi.org/10.1364/OPTICA.2.000070
  2. S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, "High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD," Opt. Express 23, 13880-13888 (2015). https://doi.org/10.1364/OE.23.013880
  3. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005). https://doi.org/10.1364/OL.30.001273
  4. G. Son, Y. Jung, and K. Yu, "Liquid droplet sensing using twisted optical fiber couplers fabricated by hydrofluoric acid flow etching," in Proc. 25th International Conference on Optical Fiber Sensors (OFS25) (Jeju, Korea, Apr. 2017) pp. 1-4.
  5. G. Son, Y. Jung, and K. Yu, "Tapered optical fiber couplers fabricated by droplet-based chemical etching," IEEE Photon. J. 9, 7105208 (2017).
  6. F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, "Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics," Neuron 82, 1245-1254 (2014). https://doi.org/10.1016/j.neuron.2014.04.041
  7. F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. S ileo, J. E. Markowitz, R. E Peterson, A. D. Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, "Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber," Nat. Neurosci. 20, 1180-1188 (2017). https://doi.org/10.1038/nn.4591
  8. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. J. Vahala, and H. J. Kimble, "Observation of strong coupling between one atom and a monolithic microresonator," Nature 443, 671-674 (2006). https://doi.org/10.1038/nature05147
  9. V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, "Atom trapping and guiding with a subwavelengthdiameter optical fiber," Phys. Rev. A 70, 011401 (2004). https://doi.org/10.1103/PhysRevA.70.011401
  10. T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, "Nanophotonic quantum phase switch with a single atom," Nature 508, 241-244 (2014). https://doi.org/10.1038/nature13188
  11. T. A. Birks, W. J . Wadsworth, and P. S . J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000). https://doi.org/10.1364/OL.25.001415
  12. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008). https://doi.org/10.1364/OE.16.001300
  13. G. Son, S. Han, J. Park, K. Kwon, and K. Yu, "High-efficiency broadband light coupling between optical fibers and photonic integrated circuits," Nanophotonics 7, 1845-1864 (2018). https://doi.org/10.1515/nanoph-2018-0075
  14. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003). https://doi.org/10.1038/nature02193
  15. J. M. Ward, A. Maimaiti, V. H. Le, and S. N. Chormaic, "Contributed Review: Optical micro-and nanofiber pulling rig," Rev. Sci. Instrum. 85, 111501 (2014). https://doi.org/10.1063/1.4901098
  16. G. Son and K. Yu, "High-efficiency power transfer for silicon-based photonic devices," Proc. SPIE 10526, 1052616 (2018).
  17. P.-G. De Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves ( Springer, NY, U S A, 2013).
  18. P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999). https://doi.org/10.1063/1.369695
  19. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. I. Adiabaticity criteria," IEE Proc. J - Optoelectron. 138, 343-354 (1991). https://doi.org/10.1049/ip-j.1991.0060