DOI QR코드

DOI QR Code

All-fiber 1.5-kW-class Single-mode Yb-doped Polarization-maintaining Fiber Laser with 10 GHz Linewidth

전광섬유 MOPA 시스템 기반 10 GHz 선폭을 갖는 1.5 kW 단일모드 이터븀 첨가 편광유지 광섬유 레이저

  • Jeong, Seongmook (Laser R&D Laboratory, LIGNex1) ;
  • Kim, Kihyuck (Laser R&D Laboratory, LIGNex1) ;
  • Kim, Taekyun (Laser R&D Laboratory, LIGNex1) ;
  • Lee, Sunghun (Laser R&D Laboratory, LIGNex1) ;
  • Yang, Hwanseok (Laser R&D Laboratory, LIGNex1) ;
  • Lee, Junsu (Ground Technology Research Institute, Agency for Defense Development) ;
  • Lee, Kwang Hyun (Ground Technology Research Institute, Agency for Defense Development) ;
  • Lee, Jung Hwan (Ground Technology Research Institute, Agency for Defense Development) ;
  • Jo, Min-Sik (Ground Technology Research Institute, Agency for Defense Development)
  • 정성묵 (LIG넥스원 레이저연구팀) ;
  • 김기혁 (LIG넥스원 레이저연구팀) ;
  • 김태균 (LIG넥스원 레이저연구팀) ;
  • 이성헌 (LIG넥스원 레이저연구팀) ;
  • 양환석 (LIG넥스원 레이저연구팀) ;
  • 이준수 (국방과학연구소 지상기술연구원) ;
  • 이광현 (국방과학연구소 지상기술연구원) ;
  • 이정환 (국방과학연구소 지상기술연구원) ;
  • 조민식 (국방과학연구소 지상기술연구원)
  • Received : 2020.08.12
  • Accepted : 2020.08.27
  • Published : 2020.10.25

Abstract

In this paper, we have studied the characteristics of stimulated Brillouin scattering (SBS) and mode instability (MI) in a ytterbium-doped polarization-maintaining fiber laser with master oscillator power amplifier configuration. We measured the laser output power and back-reflection spectrum for a variety of ytterbium-doped fibers and seed lights, to investigate the power-scaling limits of fiber lasers. By optimizing the laser structure, we demonstrated an all-fiber high-power polarization-maintaining fiber laser with near-diffraction-limited beam quality. The output power of 1.5 kW was achieved with a linewidth of 10 GHz, generated by pseudo-random binary sequence (PRBS) phase modulation. The beam quality M2 was about 1.15 at the maximum output power. The polarization extinction ratio (PER) was greater than 17 dB.

본 논문에서는 전광섬유 master oscillator power amplifier (MOPA) 구조의 이터븀(ytterbium) 첨가 편광유지 광섬유 레이저의 유도 브릴루앙 산란 및 모드 불안정 특성에 대해 연구하였다. 이터븀 첨가 광섬유 및 신호 광원의 종류에 따라 레이저 출력 및 역반사 스펙트럼을 측정하여 광섬유 레이저의 출력 증폭 한계를 분석하였다. 레이저 구조의 최적화를 통해 단일모드 빔 품질을 갖는 전광섬유 고출력 편광유지 광섬유 레이저를 구현하였다. Pseudo-random binary sequence (PRBS) 신호에 의해 위상변조된 10 GHz의 선폭을 갖는 신호 광원을 적용하여 1.5 kW의 출력을 얻었다. 최대 출력에서 1.15의 빔 품질을 가지며, 17 dB 이상의 편광소광률 특성을 확인하였다.

Keywords

References

  1. M. N. Zervas and C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron. 20, 0904123 (2014).
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010).
  3. J. Lee, K. H. Lee, H. Jeong, M. Park, J. H. Seung, and J. H. Lee, "2.05 kW all-fiber high-beam-quality fiber amplifier with stimulated Brillouin scattering suppression incorporating a narrow-linewidth fiber-Bragg-grating-stabilized laser diode seed source," Appl. Opt. 58, 6251-6256 (2019). https://doi.org/10.1364/AO.58.006251
  4. T. J. Wagner, "Fiber laser beam combining and power scaling progress, Air Force Research Laboratory Laser Division," Proc. SPIE 8237, 823718 (2012).
  5. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, "Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition," Opt. Lett. 41, 3964-3967 (2016). https://doi.org/10.1364/OL.41.003964
  6. B. Anderson, A. Flores, R. Holten, and I. Dajani, "Comparison of phase modulation schemes for coherently combined fiber amplifiers," Opt. Express 23, 27046-27060 (2015). https://doi.org/10.1364/OE.23.027046
  7. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012). https://doi.org/10.1364/OE.20.021196
  8. B. G. Ward, "Maximizing power output from continuouswave single-frequency fiber amplifiers," Opt. Lett. 40, 542-545 (2015). https://doi.org/10.1364/OL.40.000542
  9. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972). https://doi.org/10.1364/AO.11.002489
  10. R. Engelbrecht, J. Hagen, and M. Schmidt, "SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density," Proc. SPIE 5777, 795-798 (2005).
  11. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014). https://doi.org/10.1364/OE.22.017735
  12. I. Dajani, C. Vergien, C. Robin, and C. Zeringue, "Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output," Opt. Express 17, 24317-24333 (2009). https://doi.org/10.1364/OE.17.024317
  13. J. D. Marconi, J. M. C. Boggio, and H. L. Fragnito, "Narrow linewidth fibre-optical wavelength converter with strain suppression of SBS," Electron. Lett. 40, 1213-1214 (2004). https://doi.org/10.1049/el:20045961
  14. C. Robin, I. Dajani, and F. Chiragh, "Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output," Proc. SPIE 7914, 79140B (2011).
  15. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers," J. Opt. 18, 065501 (2016). https://doi.org/10.1088/2040-8978/18/6/065501
  16. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbiumdoped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
  17. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers," Opt. Express 19, 13218-13224 (2011). https://doi.org/10.1364/OE.19.013218
  18. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser system," Opt. Express 20, 440-451 (2012). https://doi.org/10.1364/OE.20.000440
  19. B. Ward, C. Robin, and I. Dajani, "Origin of thermal modal instabilities in large mode area fiber amplifiers," Opt. Express 20, 11407-11422 (2012). https://doi.org/10.1364/OE.20.011407
  20. A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011). https://doi.org/10.1364/OE.19.010180
  21. M. N. Zervas, "Power scaling limits in high power fiber amplifiers due to transverse mode instability, Thermal Lensing and Fiber Mechanical Reliability," Proc. SPIE 10512, 1051205 (2018).
  22. S. Naderi, I. Dajani, T. Madden, and C. Robin, "Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express 21, 16111-16129 (2013). https://doi.org/10.1364/OE.21.016111
  23. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, "Theoretical analysis of mode instability in high-power fiber amplifiers," Opt. Express 21, 1944-1971 (2013). https://doi.org/10.1364/OE.21.001944
  24. C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schroter, H. Bartelt, and M. Duparre, "Mode resolved bend loss in few-mode optical fibers," Opt. Express 21, 3170-3181 (2013). https://doi.org/10.1364/OE.21.003170
  25. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "1.3 kW monolithic linearly-polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities," Photon. Res. 3, 86-93 (2015). https://doi.org/10.1364/PRJ.3.000086
  26. C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, "Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier," Opt. Lett. 41, 5202-5205 (2016). https://doi.org/10.1364/OL.41.005202
  27. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength," J. Opt. 17, 045504 (2015). https://doi.org/10.1088/2040-8978/17/4/045504
  28. A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010). https://doi.org/10.1364/AOP.2.000001
  29. V. R. Supradeepa, "Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise," Opt. Express 21, 4677-4687 (2013). https://doi.org/10.1364/OE.21.004677
  30. N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, "Up to 2.5 kW on non-PM fiber and 2.0 kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format," Proc. SPIE 10512, 105120E (2018).
  31. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers," Laser Phys. Lett. 12, 085101 (2015). https://doi.org/10.1088/1612-2011/12/8/085101
  32. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tunnermann, "Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers," Opt. Express 20, 15710-15722 (2012). https://doi.org/10.1364/OE.20.015710
  33. R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, P. Zhou, and X. Xu, "2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression," Laser Phys. Lett. 14, 085102 (2017). https://doi.org/10.1088/1612-202X/aa760b
  34. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, "Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers," Proc. SPIE 8961, 89611R (2014).
  35. E. C. Honea, M. P. Savage-Leuchs, S. M. Courtney, K. S. Brar, J. D. Henrie, and C. D. Dilley, "Fiber amplifier system for suppression of modal instabilities and method," US Patent 9214781 B2 (2015).
  36. M. P. Savage-Leuchs, "Method and apparatus for optical gain fiber having segments of differing core size," US Patent 7768700 B1 (2010).
  37. R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, "Suppressing mode instabilities by optimizing the fiber coiling methods," Laser Phys. Lett. 14, 025101 (2017). https://doi.org/10.1088/1612-202X/aa4fbf
  38. S. Jeong, K. Kim, S. Lee, S. Hwang, H. Yang, B. Moon, Y. M. Jhon, M. K. Park, and J. H. Lee, "Characteristics of stimulated Brillouin scattering suppression in high-power fiber lasers using temperature gradients," Korean J. Opt. Photon. 30, 167-173 (2019). https://doi.org/10.3807/KJOP.2019.30.4.167
  39. B. M. Anderson, A. Flores, and I. Dajani, "Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression," Opt. Express 25, 17671-17682 (2017). https://doi.org/10.1364/OE.25.017671
  40. M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, "1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap," Sci. Rep. 10, 629 (2020). https://doi.org/10.1038/s41598-019-57408-5