DOI QR코드

DOI QR Code

Trend of Packaging Technology for Floating Photovoltaics

수상/해상 태양광발전 시스템의 패키징 기술개발 동향

  • Choi, Su Bin (Carbon Materials Application R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Myounghun (Carbon Materials Application R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Kwang-Seok (Carbon Materials Application R&D Group, Korea Institute of Industrial Technology)
  • 최수빈 (한국생산기술연구원 탄소소재응용연구그룹) ;
  • 김명훈 (한국생산기술연구원 탄소소재응용연구그룹) ;
  • 김광석 (한국생산기술연구원 탄소소재응용연구그룹)
  • Received : 2020.09.09
  • Accepted : 2020.09.28
  • Published : 2020.09.30

Abstract

The importance of floating photovoltaic systems has recently been emerging to address some issues arising from the installation of conventional ground-mounted photovoltaics. Floating photovoltaics have a few advantages such as cutting down land usage, reducing water evaporation or creating algae. Though there is still necessity to supplement with technical issues: mechanical stability, reliability and long-term durability of floaters and modules. In this paper, we focus the current level of packaging development and introduce research trends that could be applied to next-generation floating photovoltaics.

Keywords

References

  1. F. Shariatzadeh, P. Mandal, and A. K. Srivastava, "Demand response for sustainable energy systems: A review, application and implementation strategy", Renewable Sustainable Energy Rev., 45 , 343 (2015). https://doi.org/10.1016/j.rser.2015.01.062
  2. E. W. McFarland, "Solar energy: setting the economic bar from the top-down", Energy Environ. Sci., 7, 846 (2014). https://doi.org/10.1039/C3EE43714K
  3. M. A. Green, "Commercial progress and challenges for photovoltaics", Nat. Energy, 1, 15015 (2016). https://doi.org/10.1038/nenergy.2015.15
  4. H. Tanaka and K. S. Kim, "Reliability evaluation for photovoltaic modules", J. Microelectron. Packag. Soc., 19(2), 1 (2012). https://doi.org/10.6117/kmeps.2012.19.2.001
  5. K. Trapani and M. R. Santafe, "A review of floating photovoltaic installations: 2007-2013", Prog. Photovoltaics, 23, 524 (2015). https://doi.org/10.1002/pip.2466
  6. F. Bella, A. Lambetti, S. Bianco, E. Tresso, C. Gerbaldi, and C. F. Pirri, "Floating, Flexible Polymeric Dye-Sensitized Solar-Cell Architecture: The Way of Near-Future Photovoltaics", Adv. Mater. Technol., 1, 160002 (2016).
  7. C. Ferrer-Gisbert, J. J. Ferran-Gozalvez, M. R. Santafé, P. F. Gisbert, F. J. Sanchez-Romero, and J. B. Torregrosa-Soler, "A new photovoltaic floating cover system for water reservoirs", Renewable Energy, 60, 63 (2013). https://doi.org/10.1016/j.renene.2013.04.007
  8. N. Zhang, G. Chen, Y. Xu, X. Xu, and L. Yu, "Power Generation, Evaporation Mitigation, and Thermal Insulation of Semitransparent Polymer Solar Cells: A Potential for Floating Photovoltaic Applications", ACS Appl. Energy Mater., 2, 6060 (2019). https://doi.org/10.1021/acsaem.9b01176
  9. M. R. Santafe, J. B. T. Soler, F. J. S. Romero, P. S. F. Gisbert, J. J. F. Gozalvez, and C. M. F. Gisbert, "Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs", Energy, 67, 246 (2014). https://doi.org/10.1016/j.energy.2014.01.083
  10. World Bank Group, "Floating Solar Market Report-Excutive Summary", 1, ESMAP (2018).
  11. https://zdnet.co.kr/view/?no=20200803175851
  12. Korea energy agency, "Analysis report of floating photovoltaic market" (2018).
  13. S. H. Lee, B. M. Park, K. H. Kim, Y. C. Chang, J. Pyee, and H. J. Chang, "Effects of passivation thin films by spray coatings on properties of flexible CIGS solar cells", J. Microelectron. Packag. Soc., 23(3), 57 (2016). https://doi.org/10.6117/kmeps.2016.23.3.057
  14. https://www.yna.co.kr/view/AKR20150330043800009
  15. http://m.cnews.co.kr/m_home/view.jsp?idxno=201801031136520120985
  16. http://www.electimes.com/article.asp?aid=1592444853200365002
  17. http://m.solartodaymag.com/news/articleView.html?idxno=9019
  18. Korea institute of civil engineering and building technologt, "Preliminary study on development of buoyant body and mooring system for marine solar power plant" (2018).
  19. Y. K. Choi, N. H. Lee, A. K. Lee, and K. J. Kim, "A study on major design elements of tracking-type floating photovoltaic systems", Int. J. Smart Grid Clean Energy, 3, 70 (2014). https://doi.org/10.12720/sgce.3.1.70-74
  20. http://www.fntoday.co.kr/ews/articleView.html?idxno=203502
  21. http://www.scotra.co.kr/
  22. http://nemoeng.com/new/
  23. http://efloat.co.kr/
  24. https://www.q-cells.com/
  25. H. Wang, Y. Zhao, Z. Wang, Y. Liu, Z. Zhao, G. Xu, T. Han, J. Lee, C. Chen, D. Bao, Y. Huang, Y. Duan, and Y. Yang, "Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation", Nano Energy, 69, 104375 (2020). https://doi.org/10.1016/j.nanoen.2019.104375
  26. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H. G. Boyen, "Intrinsic thermal instability of methylammonium lead trihalide perovskite", Adv. Energy Mater., 5, 8 (2015).
  27. K. W. Bong, J. L.ee, and P. S. Doyle, "Stop flow lithography in perfluoropolyether (PFPE) microfluidic channels", Lab Chip, 14, 4680 (2014). https://doi.org/10.1039/C4LC00877D
  28. J. Zhang, A. Wang, and S. Seeger, "Nepenthes Pitcher Inspired Anti-Wetting Silicone Nanofilaments Coatings: Preparation, Unique Anti-Wetting and Self-Cleaning Behaviors", Adv. Funct. Mater., 24, 1074 (2014). https://doi.org/10.1002/adfm.201301481
  29. https://standard.go.kr/KSCI/standardIntro/getStandardSearch-View.do?menuId=919&topMenuId=502&upperMenuId=503 &ksNo=KSC8561&tmprKsNo=KSC8561&reformNo=04
  30. H. Liu, V. Krishna, J. L. Leung, T. Reindl, and L. Zhao, "Field experience and performance analysis of floating PV technologies in the tropics", Prog. Photovolt. Res. Appl., 26, 957 (2018). https://doi.org/10.1002/pip.3039