DOI QR코드

DOI QR Code

Measurement of Mechanical Properties of Thin Film Materials for Flexible Displays

플렉서블 디스플레이용 박막 소재 물성 평가

  • Oh, Seung Jin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ma, Boo Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Hyeong Jun (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Yang, Chanhee (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2020.08.27
  • Accepted : 2020.09.29
  • Published : 2020.09.30

Abstract

Commercialization of flexible OLED displays, such as rollable and foldable displays, has attracted tremendous interest in next-generation display markets. However, during bending deformation, cracking and delamination of thin films in the flexible display panels are the critical bottleneck for the commercialization. Therefore, measuring mechanical properties of the fragile thin films in the flexible display panels is essential to prevent mechanical failures of the devices. In this study, tensile properties of the metal and ceramic nano-thin films were quantitatively measured by using a direct tensile testing method on the water surface. Elastic modulus, tensile strength, and elongation of the sputtered Mo, MoTi thin films, and PECVD deposited SiNx thin films were successfully measured. As a result, the tensile properties were varied depending on the deposition conditions and the film thickness. The measured tensile property values can be applied to stress analysis modeling for mechanically robust flexible displays.

차세대 디스플레이 시장을 선도하기 위해서는 롤러블(rollable), 폴더블(foldable) 디스플레이와 같은 플렉서블(flexible) OLED 디스플레이의 상용화 및 양산화가 필수적이나, 실제 공정 및 굽힘 과정에서 발생하는 극심한 박막 내부 응력 변화로 인한 기계적 파손 문제가 심각한 상황이다. 따라서, 플렉서블 디스플레이 구조에 사용되는 박막 재료의 기계적 물성을 파악하는 것은 제품의 강건한 설계 및 구조 최적화에 필수적이다. 본 논문에서는 물 표면 플랫폼을 이용한 나노 박막 인장 시험법을 적용하여 플렉서블 디스플레이 패널에 적용되는 금속 및 세라믹 박막 소재들의 인장 물성을 정량적으로 측정하였다. 스퍼터링(Sputtering)으로 증착된 Mo, MoTi 나노 박막과, 플라즈마 강화 화학 기상 증착법(Plasma Enhanced Chemical Vapor Deposition, PECVD)으로 증착된 SiNx 나노 박막의 탄성 계수와 인장 강도 및 연신율을 측정하는 데 성공하였다. 결과적으로 박막의 증착 조건 및 두께에 따라 기계적 물성이 크게 변화할 수 있음을 확인하였으며, 측정된 인장 물성은 기계적으로 강건한 롤러블, 폴더블 디스플레이의 설계를 위한 응력 해석 모델링 데이터로 활용될 수 있을 것으로 기대한다.

Keywords

References

  1. Y. F. Liu, J. Feng, Y. G. Bi, D. Yin, and H. B. Sun, "Recent Developments in Flexible Organic Light?Emitting Devices", Advanced Materials Technologies, 4(1), 1800371 (2019). https://doi.org/10.1002/admt.201800371
  2. B. S. Ma, W. Jo, W. Kim, and T. S. Kim, "Mechanical Modeling of Rollable OLED Display Apparatus Considering Spring Component", J. Microelectron. Packag. Soc., 27(2), 19 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.019
  3. M. K. Lee, I. W. Suh, H. S. Jung, J. H. Lee, and S. H. Choa, "Warpage of Flexible OLED under High Temperature Reliability Test", J. Microelectron. Packag. Soc., 23(1), 17 (2016). https://doi.org/10.6117/kmeps.2016.23.1.017
  4. S. H. Choa, Y. M. Jang, and H. S. Lee, "Effects of Encapsulation Layer on Center Crack and Fracture of Thin Silicon Chip using Numerical Analysis", J. Microelectron. Packag. Soc., 25(1), 1 (2018). https://doi.org/10.6117/KMEPS.2018.25.1.001
  5. A. Kleinbichler, M. Bartosik, B. Volker, and M. J. Cordill, "Thin Film Adhesion of Flexible Electronics Influenced by Interlayers", Advanced Engineering Materials, 19(4), 1600665 (2017). https://doi.org/10.1002/adem.201600665
  6. O. Kraft and C. A. Volkert, "Mechanical Testing of Thin Films and Small Structures", Advanced Engineering Materials, 3(3), 99 (2001). https://doi.org/10.1002/1527-2648(200103)3:3<99::AID-ADEM99>3.0.CO;2-2
  7. J. H. Kim, A. Nizami, Y. Hwangbo, B. Jang, H. Lee, Woo, C. S. Hyun, and T. S. Kim, "Tensile testing of ultra-thin films on water surface", Nature communications, 4(1), 1 (2013).
  8. T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, "Applications of Digital-image-correlation Techniques to Experimental Mechanics", Experimental Mechanics, 25(3), 232 (1985). https://doi.org/10.1007/BF02325092
  9. X. Dai, A. Zhou, L. Feng, Y. Wang, J. Xu, and J. Li, "Molybdenum thin films with low resistivity and superior adhesion deposited by radio-frequency magnetron sputtering at elevated temperature", Thin Solid Films, 567(30), 64 (2014). https://doi.org/10.1016/j.tsf.2014.07.043
  10. T. Tsuchiya, M. Hirata, and N. Chiba, "Young's modulus, fracture strain, and tensile strength of sputtered titanium thin films", Thin Solid Films, 484(1-2), 245 (2005). https://doi.org/10.1016/j.tsf.2005.02.024
  11. Z. Gan, C. Wang, and Z. Chen, "Material Structure and Mechanical Properties of Silicon Nitride and Silicon Oxynitride Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition", Surfaces, 1(1), 59 (2018). https://doi.org/10.3390/surfaces1010006
  12. S. Lee, J. H. Kim, Y. S. Kim, T. Ohba, and T. S. Kim, "Effects of Thickness and Crystallographic Orientation on Tensile Properties of Thinned Silicon Wafers", IEEE Trans. Compon. Packag. Manuf. Technol., 10(2), 296 (2020). https://doi.org/10.1109/TCPMT.2019.2931640
  13. S. S. Sandeep, K. Warikoo, and A. Kottantharayil, "Optimization of ICP-CVD silicon nitride for Si solar cell passivation", Proc. 38th IEEE Photovolt. Special. Conf., Austin, TX, USA, 1102 (2012).

Cited by

  1. 전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작 vol.28, pp.1, 2020, https://doi.org/10.6117/kmeps.2021.28.1.055