DOI QR코드

DOI QR Code

The Convergence Effect of Phloretin Existent in Plants on Vascular Contractility

플로레틴(Phloretin)의 혈관내피수축 융합효과와 관련기전 연구

  • Bang, Joon Seok (College of Pharmacy, Sookmyung Women's University) ;
  • Je, Hyun Dong (Dept. of Pharmacology, College of Pharmacy, Daegu Catholic University) ;
  • Min, Young Sil (Dept. of Pharmaceutical Science, Jungwon University)
  • Received : 2020.09.15
  • Accepted : 2020.10.20
  • Published : 2020.10.28

Abstract

This study tried to observe the ability to inhibit vasocontriction in phloretin - the primary ingredient of apple tree leaves and the Manchurian apricot - through ROCK(Rho-associdated, coiled-coil containing protein kinase) inactivation in rat aortae. A piece of artery that was separated from Sprague-Dawley male rats and retained or damaged the endothelium was suspended in myograph tank with two metal rings, the lower ring fixed to the bottom of the tank, and the upper ring connected to the isotonic force transducer. Interestingly, phloretin inhibited fluoride- or phorbol ester-provoked contraction implying that additional pathways dissimilar from endothelial nitric oxide synthesis such as ROCK or MEK (mitogen activated protein kinase kinase) inactivation might be involved in the vasorelaxation. Therefore, this study provides that phloretin participates in the reduction of ROCK or MEK activity in smooth muscle in addition to the endothelial-dependent action of the endotheliuim in complete blood vessels, and consequently inhibits actin-myosin interaction in smooth muscle. Furthermore, phloretin inhibited thromboxane A2-induced contraction suggesting the mechanism including inhibition of ROCK and MEK.

이 실험에서 뇌졸중, 심혈관계 질환 등에 대해 치료 활성이 기대되는 플로레틴(phloretin) - 사과나무 잎과 개살구의 주성분 - 에서의 쥐의 대동맥에서 ROCK(Rho연관 인산화효소) 불활성화를 통해 혈관수축을 억제한다는 기전을 확인하고자 한다. 개체에서 분리되고 내피가 유지되거나 손상된 동맥의 고리 조각은 2개의 금속 고리로 근운동기록기(myograph) 수조 안에 현수되었고 아래쪽 고리는 수조바닥에 고정되었고 위쪽 고리는 등장력 변환기에 연결되었고 등장력 변환기의 전기적 신호는 생리측정기에 표시되었다. 재미있게도 플로레틴은 수축약 (fluoride, phorbol ester)에 의한 혈관 수축을 억제하여 ROCK 또는 MEK(마이토겐 활성화 단백질 키나제 키나제) 비활성화 같은 경로가 혈관이완에 관여할 수 있음을 보였다. 따라서 phloretin은 내피가 완전한 혈관에서의 내피에 의존적인 작용 외에 추가적으로 내피에 비의존적으로 평활근에서 ROCK 또는 MEK 활성 감소에 참여하여 결과적으로 평활근에서 액틴-미오신 상호작용을 억제하여 혈관을 이완하는 것으로 관찰되었다. 또한 phloretin은 thromboxane A2 유도수축을 억제하고 ROCK 및 MEK 억제를 포함하는 기전있음을 주장합니다.

Keywords

References

  1. L. J. Appel et al. (2003). Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA, 289(16), 2083-2093. DOI : 10.1001/jama.289.16.2083
  2. M. Kuroyanagi, T. Noro & S. Fukushima. (1983). Studies on the constituents of the seeds of Alpinia katsumadai Hayata. Chemical and Pharmaceutical Buletin, 31(5), 1544-1550. DOI : 10.1248/cpb.31.1544
  3. Y. Yang et al. (1999). Two novel anti-emetic principles of Alpinia katsumadai. J Natl Prod, 62(12), 1672-1674. DOI : 10.1021/np990096e
  4. H. J. Choi & S. I. Lee. (1989). Alpiniae katsumadaii Semen, In Korean Herbal Pharmacopoeia, Korean Medical Index Co., Seoul, Korea, p. 373. (Oniline). http://www.law.go.kr/LSW//admRulInfoP.do?adm RulSeq=4329#
  5. H. Duan et al. (2017). Phloretin induces apoptosis of human esophageal cancer via a mitochondria-dependent pathway. Oncol Lett, 14(6), 6763-6768. DOI : 10.3892/ol.2017.7037
  6. A. P. Somlyo & A. V. Somlyo. (1994). Signal transduction and regulation in smooth muscle. Nature, 372(6503), 231-236. DOI : 10.1038/372231a0
  7. A. P. Somlyo & A. V. Somlyo. (1998). From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta Physiol Scand., 164(4), 437-448. DOI : 10.1046/j.1365-201X.1998.00454.x
  8. M. Uehata et a.l (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389(6654), 990-994. DOI : 10.1038/40187
  9. S. Sakurada et al. (2003). $Ca^{2+}$-dependent activation of Rho and Rho-kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ Res, 93(6), 548-556. DOI : 10.1161/01.RES.0000090998.08629.60
  10. T. Kitazawa, M. Masuo & A.P. Somlyo. (1991). G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci USA, 88(20), 9307-9310. https://doi.org/10.1073/pnas.88.20.9307
  11. A. Gohla, G. Schultz & S. Offermanns. (2000). Roles for G(12)/G(13) in agonist-induced vascular smooth muscle cell contraction. Circ Res, 87(3), 221-227. DOI : 10.1161/01.res.87.3.221
  12. T. Leung et al. (1995), A novel serine/threonine kinase binding the Ras- related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem, 270(49), 29051-29054. DOI : 10.1074/jbc.270.49.29051
  13. T. Matsui et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J, 15(9), 2208-2216 https://doi.org/10.1002/j.1460-2075.1996.tb00574.x
  14. W. G. Wier & K. G. Morgan. (2003). Alpha1-adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol, 150, 91-139. DOI : 10.1007/s10254-003-0019-8
  15. S. B. Jeon et al. (2006). A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem Biophys Res Commun, 343(1), 27-33. DOI : 10.1016/j.bbrc.2006.02.120
  16. D. P. Wilson et al. (2005). Thromboxane $A_2$-induced contraction of rat caudal arterial smooth muscle involves activation of $Ca^{2+}$ entry and $Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem J , 389(Pt3), 763-774. DOI : 10.1042/BJ20050237
  17. B. Bhattacharya & R. E. Roberts. (2003). Enhancement of alpha2-adrenoceptor-mediated vasoconstriction by the thromboxane-mimetic U46619 in the porcine isolated ear artery: role of the ERK-MAP kinase signal transduction cascade. Br J Pharmacol, 139(1), 156-162. DOI : 10.1038/sj.bjp.0705208
  18. W. Zheng et al (2018). The protective effect of phloretin in osteoarthritis: an in vitro and in vivo study. Food Funct, 9(1), 263-278. DOI : 10.1039/c7fo01199g
  19. H. Duan et al (2017). Phloretin induces apoptosis of human esophageal cancer via a mitochondria-dependent pathway. Oncol Lett, 14(6), 6763-6768. DOI : 10.3892/ol.2017.7037
  20. R. S. Garcha, P. S. Sever, & A. D. Hughes. (2001). Mechanism of action of angiotensin II in human isolated subcutaneous resistance arteries. Br J Pharmacol, 134(1), 188-196. DOI : 10.1038/sj.bjp.0704222
  21. Y. S. Min et al. (2018). Endothelium Independent Effect of Pelargonidin on Vasoconstriction in Rat Aorta. Biomol Ther(Seoul), 26(4), 374-379. DOI : 10.4062/biomolther.2017.197
  22. M. Grann et al. (2016). Mechanisms Involved in Thromboxane A 2 -induced Vasoconstriction of Rat Intracavernous Small Penile Arteries. Basdic Clin Pharmaciol Toxicol, 119(3), 86-95. DOI : 10.1111/bcpt.12544
  23. H. H. Chung et al. (2010). The xanthine derivative KMUP-1 inhibits models of pulmonary artery hypertension via increased NO and cGMP-dependent inhibition of RhoA/Rho kinase. Br J Pharmacol, 160(4), 971-986. DOI : 10.1111/j.1476-5381.2010.00740.x