DOI QR코드

DOI QR Code

The Antioxidation Effect of Salsola komarovii Extract and Its Influence on Cell Bio activity

수송나물(Salsola komarovii)의 항산화, 항염 및 미백 활성

  • Kim, Min Jeong (Department of Beauty & Cosmetology, Jeju National University) ;
  • Kim, Sook-Hee (K-Beauty industry fusion, Konkuk Continuing Education Center, Konkuk University) ;
  • Lee, Ja-Bok (L.FOUNDER INC.)
  • 김민정 (제주대학교 건강뷰티향장학과) ;
  • 김숙희 (건국대학교 미래지식교육원 K뷰티산업융합학전공) ;
  • 이자복 ((주)엘파운더 연구소)
  • Received : 2020.09.02
  • Accepted : 2020.10.20
  • Published : 2020.10.28

Abstract

S. komarovii is halophyte that grows in soil or waters of high salinity, such as in saline semi-deserts, sloughs and seashores. Traditionally, S. komarovii has been used for food and medicinal purposes in Korea. S. komarovii was extracted in 70% ethanol to measure anti-oxidative activity using DPPH and ABTS assay. The IC50 values of the S. komarovii extract against DPPH radicals and ABTS radicals were 186.10 mg/mL and 121.89 mg/mL. In addition, total polyphenol and reducing power were measured. The S. komarovii extract exhibited superior polyphenolic (22.5%) and antioxidant (28.4%) contents. Regarding cell bioactivity, MTT assay was conducted to reveal cytotoxicity of S. komarovii extract and showed the non-cytotoxicity of S. komarovii extract. Anti-inflammatory and skin whitening effects were measured at 100 ㎍/mL. Therefore, this study suggests that the S. komarovii extract can be used as a functional cosmetic product material.

수송나물은 동아시아에서 자생하는 염생식물로 바닷가와 같은 염분이 많은 토지에서도 생장이 가능한 식물이다. 전통적으로 수송나물은 식품으로서 사용되는 동시에 약용으로도 사용되었다. 본 연구는 수송나물의 화장품 원료로서의 가능성을 알아보기 위하여, 항산화 실험 및 세포실험을 실시하였다. 항산화능 측정을 위해 수송나물을 70% 에탄올로 추출물을 제조하였다. 항산화 측정에는 DPPH와 ABTS 법을 사용하였으며, 그 결과 각각의 실험에서 IC50값이 186.10 mg/mL과 121.89 mg/mL로 나타났다. 동시에 폴리페놀 함량과 환원능 측정을 실시하였고, 그 결과 22.5%의 폴리페놀 함량과 28.4%의 환원능이 나타났다. 세포실험에서는 MTT 법을 사용하여 해당 추출물이 세포독성이 없음을 나타내었으며, 100 ㎍/mL 농도에서 항염능과 미백능을 나타내었다. 결과적으로 수송나물 추출물은 미백 및 항염능을 가진 화장품 소재로서 사용가능함을 확인하였다.

Keywords

References

  1. H. Westerblad & D. G. Allen. (2011). Emerging roles of ROS/RNS in muscle function and fatigue. Antioxidants & redox signaling, 15(9), 2487-2499. DOI : 10.1089/ars.2011.3909
  2. B. Fubini & A. Hubbard. (2003). Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radical Biology and Medicine, 34(12), 1507-1516. DOI : 10.1016/S0891-5849(03)00149-7
  3. S. K. Powers & M. J. Jackson. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological reviews, 88(4), 1243-1276. DOI : 10.1152/physrev.00031.2007
  4. E. Barbieri & P. Sestili. (2012). Reactive oxygen species in skeletal muscle signaling. Journal of signal transduction, 2012(1), 1-17 DOI : 10.1155/2012/982794
  5. M. Hakiman & M. Maziah. (2009). Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus deltoidea accessions. Journal of Medicinal Plants Research, 3(3), 120-131. DOI : 10.5897/JMPR.9000931
  6. M. Koruk, S. Taysi, M. C. Savas, O. Yilmaz, F. Akcay & M. Karakok. (2004). Oxidative stress and enzymatic antioxidant status in patients with nonalcoholic steatohepatitis. Annals of Clinical & Laboratory Science, 34(1), 57-62.
  7. L. Benes, Z. Durackova & M. Ferencik. (1999). Chemistry, physiology and pathology of free radicals. Life sciences, 65(18-19), 1865-1874. DOI : 10.1016/S0024-3205(99)00439-7
  8. S. Srivastava, D. Singh, S. Patel & M. R. Singh. (2017). Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. International journal of biological macromolecules, 101(1), 502-517. DOI : 10.1016/j.ijbiomac.2017.03.100
  9. D. Dreher & A. F. Junod. (1996). Role of oxygen free radicals in cancer development. European Journal of cancer, 32(1), 30-38. DOI : 10.1016/0959-8049(95)00531-5
  10. G. Ray, S. Batra, N. K. Shukla, S. Deo, V. Raina, S. Ashok & S. A. Husain. (2000). Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast cancer research and treatment, 59(2), 163-170. DOI : 10.1023/A:1006357330486
  11. W. A. Pryor. (1982). Free radical biology: xenobiotics, cancer, and aging. Annals of the New York Academy of Sciences, 393(1), 1-22. DOI : 10.1111/j.1749-6632.1982.tb31228.x
  12. C. Mancuso, G. Scapagini, D. Curro, A. M. Giuffrida Stella, C. De Marco, D. A. Butterfield & V. Calabrese. (2007). Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci, 12(1), 1107-23. DOI : 10.2741/2130
  13. B. Poljsak, R. G. Dahmane & A. Godic. (2012). Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol Alp Pannonica Adriat, 21(2), 33-36.
  14. B. Poljsak & R. Dahmane. (2012). Free radicals and extrinsic skin aging. Dermatology research and practice, 2012(1), 1-4. DOI : 10.1155/2012/135206
  15. R. Ozgur, B. Uzilday, A. H. Sekmen & I. Turkan. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832-847. DOI : 10.1071/FP12389
  16. B. Seckin, I. Turkan, A. H. Sekmen & C. Ozfidan. (2010) The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69(1), 76-85. DOI : 10.1016/j.envexpbot.2010.02.013
  17. H. Ellouzi, K. Ben Hamed, J. Cela, S. Munne-Bosch & C. Abdelly. (2011). Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum, 142(1), 128-143. DOI : 10.1111/j.1399-3054.2011.01450.x
  18. National Institute of Biological Resources. (2020). Salsola komarovii. (Online). https://species.nibr.go.kr/species/speciesDetail.do?ktsn=120000060683.
  19. M. S. Blois. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  20. N. J. Miller & C. A. Rice-Evans. (1997). Factors influencing the antioxidant activity determined by the ABTS${\cdot}$+ radical cation assay. Free radical research, 26(3), 195-199. DOI : 10.3109/10715769709097799.
  21. V. L. Singleton & J. A. Rossi. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  22. M. Oyaizu. (1986). Studies on products of browning reaction. The Japanese journal of nutrition and dietetics, 44(6), 307-315. DOI : 10.5264/eiyogakuzashi.44.307
  23. S. B. Kedare & R. P. Singh. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of food science and technology, 48(4), 412-422. DOI : 10.1007/s13197-011-0251-1
  24. V. N. Gladyshev. (2014). The free radical theory of aging is dead. Long live the damage theory!. Antioxidants & redox signaling, 20(4), 727-731. DOI : 10.1089/ars.2013.5228
  25. H. J. Jeong, H. J. Kim, E. S. Ju, C. S. Kong & Y. W. Seo. (2016). Antioxidant Effect of the Halophyte Atriplex gmelinii. Korean Society for Biotechnology and Bioengineering Journal, 31(4), 200-207. DOI : 10.7841/ksbbj.2016.31.4.200
  26. H. H. Park, S. C. Ko & W. K. Jung. (2016). Comparison of the Biological Activities of Electrodialysis-desalted Bioactive Compounds from the Halophyte Suaeda japonica. Korean journal of fisheries and aquatic sciences, 49(2), 124-130. DOI : 10.5657/KFAS.2016.0124
  27. Y. J. Choi, Y. J. Oh & D. S. Jeong. (2010). Radical Scavenging Activities of the Extracts from Punica granatum (Pomegrante) Peels. The Journal of the Natural Science, SWINS, 22 , 111-117.
  28. J. Imai, N. Ide, S. Nagae, T. Moriguchi, H. Matsuura & Y. Itakura. (1994). Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta medica, 60(5), 417-420. DOI : 10.1055/s-2006-959522
  29. B. Halliwell, R. Aeschbach, J. Löliger & O. I. Aruoma. (1995). The characterization of antioxidants. Food and Chemical Toxicology, 33(7), 601-617. DOI : 10.1016/0278-6915(95)00024-V
  30. N. S. Rajurkar & S. M. Hande. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian journal of pharmaceutical sciences, 73(2), 146. DOI : 10.4103/0250-474x.91574
  31. J. G. Lee & S. H. Oh. (2008). Inhibitory Effects of Artemisia fukudo Makino Extracts for Nitric Oxide Generation in LPS- and Interferon-${\gamma}$-stimulated RAW 264.7 Cells. The East Asian Society of Dietary Life, 18(2), 198-206.
  32. H. J. Jeong, H. J. Kim, E. S. Ju, S. G. Lee, C. S. Kong & Y. W. Seo. (2017). Antiinflammatory Activity of Solvent-partitioned Fractions from Atriplex gmelinii C. A. Mey. in LPS-stimulated RAW264.7 Macrophages. Journal of life science, 27(2), 187-193. DOI : 10.5352/JLS.2017.27.2.187