DOI QR코드

DOI QR Code

A Study on a Seismic Detection Technology for High-speed Railway Considering Site Response Characteristics

성토 구간 지반 응답을 고려한 열차 내 지진 감지 기술 개발 연구

  • Yoo, Mintaek (Railroad Structure Research Team, Korea Railroad Research Institute) ;
  • Moon, Jae Sang (Structural Dept., Yooshin Engrg. Corporation) ;
  • Park, Byoungsun (Construction Technology Research Center, Korea Conformity Laboratories) ;
  • Yoo, Byoung Soo (Dept. of Civil and Environmental Engrg., Seoul National Univ.)
  • 유민택 (한국철도기술연구원 철도구조연구팀) ;
  • 문재상 ((주)유신 구조부) ;
  • 박병선 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 유병수 (서울대학교)
  • Received : 2020.09.21
  • Accepted : 2020.10.06
  • Published : 2020.10.31

Abstract

For the rapid and accurate warning, the system requires not only the sufficient number of seismometers but also the appropriate detection technique of sensor data. Instead of installing new seismometers, on-board accelerometers of the train could be utilized as alternatives. However, the data from on-board accelerometers includes train vibrations and the response of embankment site by earthquake, which are different from earthquakes measured from the seismometer. This study suggests signal analysis technique to detect earthquake from the on-board accelerometer data. The virtual on-board accelerometer data including the response of embankment site, obtained from site response analysis method, has been constructed. The constructed data has been analyzed using short time Fourier transform (STFT) and wavelet transform (WT). STFT method provides better performance to detect long-period earthquake whereas WT method is more available to detect short-period earthquake.

지진 경보 시스템이 빠르고 정확하게 가동하기 위해서는 충분한 수량의 계측 시스템 확보와 더불어서 적절한 계측 데이터 해석기술 개발이 요구된다. 신규 지진계를 설치시 많은 비용이 소모되기 때문에, 열차 내 가속도계 등을 대체재로 지진 경보 시스템에 활용하는 것이 효율적이다. 그러나 열차에 설치된 가속도계의 경우, 지진계와는 달리 열차 주행시 진동 데이터가 포함되어 있다. 또한, 지진 발생시 성토구간에 의해서 변화된 지진응답을 계측하게 된다. 본 연구에서는 위의 특성들이 포함된 열차 가속도계 데이터에 기반한 지진감지 기술을 제안하고자 한다. 우선, 성토구간의 지진응답 해석기법을 활용하여 열차가 성토구간을 지날 때 지진이 발생하는 것을 구현한 가상의 열차 가속도 데이터를 구축하였다. 구축한 가속도 데이터를 Short time Fourier Transform(STFT)와 Wavelet Transform(WT)을 활용하여 시간-주파수 분석을 수행하였다. 분석 결과, STFT가 장주기 지진 감지에 적합한 반면, WT의 경우 단주기 지진 감지에 유용함을 확인하였다.

Keywords

References

  1. Akin, M. (2002), Comparison of Wavelet Transform and FFT Methods in the Analysis of EEG Signals, J. of medical systems, Vol.26, pp.241-247. https://doi.org/10.1023/A:1015075101937
  2. Al-Qazzaz, N.K., Ali, S.H.B.M., Ahmad, S.A., Islam, M.S., and Escudero, J. (2015), Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task, Sensors, Vol.15, pp.29015-29035. https://doi.org/10.3390/s151129015
  3. Bowles, E.B. (1977), Foundation analysis and design. 2nd ed. McGraw-Hill Book Company, New York.
  4. Clayton, R.W., Heaton, T., Kohler, M., Chandy, M., Guy, R., and Bunn, J. (2015), Community Seismic Network: A dense array to sense earthquake strong motions, Seismol. Res. Lett. Vol.86, pp. 1354-1363. https://doi.org/10.1785/0220150094
  5. Griffin, D. and Lim, J. (1984), Signal Estimation from Modified Short-time Fourier Transform. IEEE Transactions on Acoustics, Speech and Signal Processing, Vol.32, No.2, pp.236-243. https://doi.org/10.1109/TASSP.1984.1164317
  6. Karim, S.A.A., Kamarudin, M.H., Karim, B.A., Hasan, M.K., and Sulaiman, J. (2011), "Wavelet Transform and Fast Fourier Transform for Signal Compression: A Comparative Study", International Conference on Electronic Devices, Systems and Applications (ICEDSA), Kuala Lumpur, pp.280-285.
  7. Khan, A., Ko, D.K., Lim, S.C., and Kim, H.S. (2019), Structural Vibration-based Classification and Prediction of Delamination in Smart Composite Laminates Using Deep Learning Neural Network, Composites Part B: Engineering, Vol.161, pp.586-594. https://doi.org/10.1016/j.compositesb.2018.12.118
  8. Kong, Q., Allen, R.M., and Schreier, L. (2016), MyShake: Initial Observations from a Global Smartphone Seismic Network, Geophys. Res. Lett., Vol.106, pp.9588-9594.
  9. Korea Meteorological Administration. Annual Report 2016; Korea Meteorological Administration: Seoul, Korea, 2016.
  10. Korea Meteorological Administration. Annual Report 2017; Korea Meteorological Administration: Seoul, Korea, 2017.
  11. Lapins, S., Roman, D.C., Rougier, J., Angelis, S.D., Cashman, K.V., and Kendall, J.-M. (2020), An examination of the Continuous Wavelet Transform for Volcano-seismic Spectral Analysis, Journal of Volcanology and Geothermal Research, Vol.389, pp.106728. https://doi.org/10.1016/j.jvolgeores.2019.106728
  12. Lei, J., Liu, C., and Jiang, D. (2019), Fault diagnosis of wind turbine based on Long Short-term memory networks, Renewable energy, Vol.133, pp.422-432. https://doi.org/10.1016/j.renene.2018.10.031
  13. Moon, J.S. and Yoo, M.T. (2020), Development of a Seismic Detection Technology for High-Speed Trains Using Signal Analysis Techniques, Sensors, Vol.20 No.13 pp.3708. https://doi.org/10.3390/s20133708
  14. Neighbors, C., Cochran, E.S., Ryan, K.J., and Kaiser, A.E. (2017), Solving for Source Parameters Using Nested Array Data: A Case Study from the Canterbury, New Zealand Earthquake Sequence. Pure Appl. Geophys., Vo.174, pp.875-893. https://doi.org/10.1007/s00024-016-1445-2
  15. Rodrigues, A.P., D'Mello, G., and Pai S.P. (2016), Selection of Mother Wavelet for Wavelet Analysis of Vibration Signals in Machining, Journal of Mechanical Engineering and Automation, Vol.6 No.5A, pp.81-85.
  16. Schnabel, P.B., Lysmer, J., and Seed, H.B. (1972), "SHAKE: A computer program for earthquake response analysis of horizontally layered sites", Report No. EERC 72-12, Earthquake Engineering Research Center, University of California, Berkeley, California.
  17. Seed, H. B. and Idriss, I. M. (1970), Soil moduli and damping factors for dynamic response analysis. Rep. No. EERC 70-10. Earthquake Engineering Research Centre, Berkeley, CA.
  18. Sheen, D.H., Park, J.H., Chi, H.C., Hwang, E.H., Lim, I.S., Seong, Y.J., and Pak, J. (2017), The First Stage of an Earthquake Early Warning System in South Korea, Seismol. Res. Lett., Vol.88, pp. 1491-1498. https://doi.org/10.1785/0220170062
  19. Strombergsson, D., Marklund, P., Berglund, K., Saari, J., and Thomson, A. (2019), Mother Wavelet Selection in the Discrete Wavelet Transform for Condition Monitoring of Wind Turbine Drivetrain Bearings, Wind Energy, Vo.22, pp.1581-1592. https://doi.org/10.1002/we.2390
  20. Sun, C.G., Cho, C.S., Son, M., and Shin, J.S. (2013),Correlations between Shear Wave Velocity and In-situ Penetration Test Results for Korean Soil Deposits, Pure and Applied Geophysics, Vol.170, No.3, pp.271-281. https://doi.org/10.1007/s00024-012-0516-2
  21. Pan, X., Cheng, Z., Zheng, Z., and Zhang, Y. (2019), Sparse Bayesian Learning Beamforming Combined with Short-time Fourier Transform for Fault Detection of Wind Turbine Blades, The Journal of the Acoustical Society of America, Vol.145, No.3, pp.1802-1802.
  22. Wongsaroj, W., Hamdani, A., Thong-Un, N., Takahashi, H., and Kikura, H. (2019), Extended Short-Time Fourier Transform for Ultrasonic Velocity Profiler on Two-Phase Bubbly Flow Using a Single Resonant Frequency, Applied Sciences, Vol.9, No.1, pp.50. https://doi.org/10.3390/app9010050