DOI QR코드

DOI QR Code

ON 𝜙-PSEUDO-KRULL RINGS

  • El Khalfi, Abdelhaq (Modelling and Mathematical Structures Laboratory Department of Mathematics Faculty of Science and Technology of Fez) ;
  • Kim, Hwankoo (Division of Computer and Information Engineering Hoseo University) ;
  • Mahdou, Najib (Modelling and Mathematical Structures Laboratory Department of Mathematics Faculty of Science and Technology of Fez)
  • Received : 2020.04.02
  • Accepted : 2020.07.02
  • Published : 2020.10.31

Abstract

The purpose of this paper is to introduce a new class of rings that is closely related to the class of pseudo-Krull domains. Let 𝓗 = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. Let R ∈ 𝓗 be a ring with total quotient ring T(R) and define 𝜙 : T(R) → RNil(R) by ${\phi}({\frac{a}{b}})={\frac{a}{b}}$ for any a ∈ R and any regular element b of R. Then 𝜙 is a ring homomorphism from T(R) into RNil(R) and 𝜙 restricted to R is also a ring homomorphism from R into RNil(R) given by ${\phi}(x)={\frac{x}{1}}$ for every x ∈ R. We say that R is a 𝜙-pseudo-Krull ring if 𝜙(R) = ∩ Ri, where each Ri is a nonnil-Noetherian 𝜙-pseudo valuation overring of 𝜙(R) and for every non-nilpotent element x ∈ R, 𝜙(x) is a unit in all but finitely many Ri. We show that the theories of 𝜙-pseudo Krull rings resemble those of pseudo-Krull domains.

Keywords

References

  1. D. F. Anderson and A. Badawi, On $\phi$-Prufer rings and $\phi$-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343.
  2. D. F. Anderson and A. Badawi, On $\phi$-Dedekind rings and $\phi$-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007-1022.
  3. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  4. A. Badawi, Pseudo-valuation rings, in Commutative ring theory (Fes, 1995), 57-67, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997.
  5. A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465-1474. https://doi.org/10.1080/00927879908826507
  6. A. Badawi, On $\phi$-pseudo-valuation rings, in Advances in commutative ring theory (Fez, 1997), 101-110, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
  7. A. Badawi, On $\phi$-pseudo-valuation rings. II, Houston J. Math. 26 (2000), no. 3, 473-480.
  8. A. Badawi, On $\phi$-chained rings and $\phi$-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725-736.
  9. A. Badawi, Pseudo-valuation domains: a survey, in Mathematics & mathematics education (Bethlehem, 2000), 38-59, World Sci. Publ., River Edge, NJ, 2002.
  10. A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
  11. A. Badawi, D. F. Anderson, and D. E. Dobbs, Pseudo-valuation rings, Lecture Notes Pure Appl. Math. 185, 57-67, Marcel Dekker, New York/Basel, 1997.
  12. C. Bakkari, S. Kabbaj, and N. Mahdou, Trivial extensions defined by Prufer conditions, J. Pure Appl. Algebra 214 (2010), no. 1, 53-60. https://doi.org/10.1016/j.jpaa.2009.04.011
  13. M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519. https://doi.org/10.1016/j.jalgebra.2005.12.023
  14. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
  15. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
  16. M. D'Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836-1851. https://doi.org/10.1080/00927872.2015.1033628
  17. M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10.1007/s11512-006-0038-1
  18. M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326
  19. D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), no. 2, 353-363. http://projecteuclid.org/euclid.pjm/1102817497 https://doi.org/10.2140/pjm.1976.67.353
  20. A. El Khalfi, H. Kim, and N. Mahdou, Amalgamated algebras issued from $\phi$-chained rings and $\phi$-pseudo valuation rings, To appear in "Bull. Iranian Math. Soc."; https://doi.10.1007/s41980-020-00461-y
  21. S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
  22. J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137-147. http://projecteuclid.org/euclid.pjm/1102810151 https://doi.org/10.2140/pjm.1978.75.137
  23. J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  24. S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937-3953. https://doi.org/10.1081/AGB-200027791
  25. H. Kim and Y. S. Park, Some remarks on pseudo-Krull domains, Comm. Algebra 33 (2005), no. 6, 1745-1751. https://doi.org/10.1081/AGB-200063361
  26. H. Kim and F. Wang, On $\phi$-strong Mori rings, Houston J. Math. 38 (2012), no. 2, 359-371.
  27. M. B. Martin and M. Zafrullah, t-linked overrings of Noetherian weakly factorial domains, Proc. Amer. Math. Soc. 115 (1992), no. 3, 601-604. https://doi.org/10.2307/ 2159205
  28. S. Oda, On pseudo-Krull domains, Math. Rep. Toyama Univ. 10 (1987), 85-106.
  29. G. Picavet and M. Picavet-L'Hermitte, When is length a length function?, J. Algebra 293 (2005), no. 2, 561-594. https://doi.org/10.1016/j.jalgebra.2005.08.014
  30. M. Tamekkante, K. Louartiti, and M. Chhiti, Chain conditions in amalgamated algebras along an ideal, Arab. J. Math. (Springer) 2 (2013), no. 4, 403-408. https://doi.org/10.1007/s40065-013-0075-0