DOI QR코드

DOI QR Code

UO2 Spheres Produce by External Gelation Process

외부겔화공정을 이용한 이산화우라늄 구형 입자 제조

  • Kim, Yeon-Ku (Next-Generation Fuel Technology Development Division, KAERI) ;
  • Sah, Injin (Next-Generation Fuel Technology Development Division, KAERI) ;
  • Kim, Eung Seon (Next-Generation Fuel Technology Development Division, KAERI)
  • 김연구 (한국원자력연구원 차세대핵연료기술개발부) ;
  • 사인진 (한국원자력연구원 차세대핵연료기술개발부) ;
  • 김응선 (한국원자력연구원 차세대핵연료기술개발부)
  • Received : 2020.04.24
  • Accepted : 2020.09.21
  • Published : 2020.10.27

Abstract

UO2 kernels, a key component of fuel elements for high temperature gas cooled reactors, have usually been prepared by sol-gel methods. Sol-gel processes have a number of advantages, such as simple processes and facilities, and higher sphericity and density. In this study, to produce 900 ㎛-sized UO2 particles using an external gelation process, contact length extension of the NH3 gas of the broth droplets pass and the improvement of the gelation device capable of spraying 14 M-NH4OH solution are used to form 3,000 ㎛-sized liquid droplets. To produce high-sphericity and high-density UO2 particles, HMTA, which promotes the gelation reaction in the uranium broth solution, is added to diffuse ammonium ions from the outside of the gelation solution during the aging process and generate ammonium ions from the inside of the ADU gel particles. Sufficient gelation inside of ADU gel particles is achieved, and the density of the UO2 spheres that undergo the subsequent treatment is 10.78 g/㎤; the sphericity is analyzed and found to be 0.948, indicating good experimental results.

Keywords

References

  1. J. W. Chang, Status of hydrogen production by nuclear power, p.23, KAERI/AR (2001).
  2. C. W. Forsberg, Int. J. Hydrogen Energy, 28, 1073 (2003). https://doi.org/10.1016/S0360-3199(02)00232-X
  3. H. D. Ringel and E. Zimmer, Nucl. Tech., 45, 287 (1979). https://doi.org/10.13182/NT79-A32297
  4. G. Brambilla, P. Genontopulos and O. Neri, Energ. Nucl.(Milan)., 17, 217 (1970).
  5. P. Naefe and E. Zimmer, Nucl. Tech., 42, 163 (1979). https://doi.org/10.13182/NT79-A32147
  6. M. S. T. Price, J. R. C. Gough and G. W. Horsley, Brit. Nucl. Energy Soc., 5, 361 (1966).
  7. R. D. Hunt, J. L. Collins, Radiochim. Acta, 92, 909 (2004). https://doi.org/10.1524/ract.92.12.909.55110
  8. K. C. Jeong, Y. K. Kim, S. C. Oh and Y. W. Lee, J. Korean Ceram. Soc., 42, 729 (2005). https://doi.org/10.4191/KCERS.2005.42.11.729
  9. Z. Xiangwen, M. Jingtao, H. Shaochang, Z. Xingyu, W. Yang, D. Changsheng, L. Tongxiang, G. Wenli, T. Yaping and T. Chunhe, Nucl. Eng. Des., 250, 192 (2012). https://doi.org/10.1016/j.nucengdes.2012.06.001
  10. Y. Tomita, M. Morihira, Y. Tamaki, K. Nishimura, S. Shoji, y. Kihara, T. Kase and T. Koizumi, Development of fuel microspheres by the external gelation process, JAEA-Research (2006).
  11. J. L. Collins and R. D. Hunt, Nucl. Energy, 71, 1 (2014). https://doi.org/10.1016/j.anucene.2014.03.025
  12. Y. K. Kim, K. C. Jeong, S. C. Oh and Y. W. Lee, J. Korean Powder Metall. Ist., 16, 115 (2009). https://doi.org/10.4150/KPMI.2009.16.2.115