DOI QR코드

DOI QR Code

Electro-Optical Properties of AZO Thin Films with Deposition & Heat treatment Conditions

AZO 박막의 증착 및 열처리 조건에 따른 전기·광학적 특성

  • Yeon, Eung-Beom (Department of Advanced Materials Science & Engineering, Semiconductor Fabrication Center, Hanbat National University) ;
  • Lee, Taek-Yong (Department of Advanced Materials Science & Engineering, Semiconductor Fabrication Center, Hanbat National University) ;
  • Kim, Seon-Tai (Department of Advanced Materials Science & Engineering, Semiconductor Fabrication Center, Hanbat National University) ;
  • Lim, Sang-Chul (Department of Advanced Materials Science & Engineering, Semiconductor Fabrication Center, Hanbat National University)
  • 연응범 (한밭대학교 신소재공학과/반도체소재부품장비센터) ;
  • 이택영 (한밭대학교 신소재공학과/반도체소재부품장비센터) ;
  • 김선태 (한밭대학교 신소재공학과/반도체소재부품장비센터) ;
  • 임상철 (한밭대학교 신소재공학과/반도체소재부품장비센터)
  • Received : 2020.08.10
  • Accepted : 2020.09.24
  • Published : 2020.10.27

Abstract

AZO thin films are grown on a p-Si(111) substrate by RF magnetron sputtering. The characteristics of various thicknesses and heat treatment conditions are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Hall effect and room-temperature photoluminescence (PL) measurements. The substrate temperature and the RF power during growth are kept constant at 400 ℃ and 200 W, respectively. AZO films are grown with a preferred orientation along the c-axis. As the thickness and the heat treatment temperature increases, the length of the c-axis decreases as Al3+ ions of relatively small ion radius are substituted for Zn2+ ions. At room temperature, the PL spectrum is separated into an NBE emission peak around 3.2 eV and a violet regions peak around 2.95 eV with increasing thickness, and the PL emission peak of 300 nm is red-shifted with increasing annealing temperature. In the XPS measurement, the peak intensity of Al2p and Oll increases with increasing annealing temperature. The AZO thin film of 100 nm thickness shows values of 6.5 × 1019 cm-3 of carrier concentration, 8.4 cm-2/V·s of mobility and 1.2 × 10-2 Ω·cm electrical resistivity. As the thickness of the thin film increases, the carrier concentration and the mobility increase, resulting in the decrease of resistivity. With the carrier concentration, mobility decreases when the heat treatment temperature increases more than 500 ℃.

Keywords

References

  1. T. Minami, T. Miyata and Y. Ohtani, Phys. Status Solidi A, 204, 3145 (2007). https://doi.org/10.1002/pssa.200622533
  2. W. J. Jeong, S. K. Kim and G. C. Park, Thin Solid Films, 506-507, 180 (2006). https://doi.org/10.1016/j.tsf.2005.08.213
  3. M. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng, 26, 194 (2013). https://doi.org/10.4313/JKEM.2013.26.3.194
  4. S. Yun, J. Lee, J. Yang and S. Lim, Phys. B, 405, 413 (2010). https://doi.org/10.1016/j.physb.2009.08.297
  5. R. Jaramillo and S. Ramanathan, Sol. Energy Mater. Sol. Cells, 95, 602 (2011). https://doi.org/10.1016/j.solmat.2010.09.025
  6. M. Chen, Z. L. Pei, C. Sun, J. Gong, R. F. Huang and L. S. Wen, Mater. Sci. Eng., B, 85, 212 (2001). https://doi.org/10.1016/S0921-5107(01)00584-0
  7. T. Minami, H. Sato, H. Nanto and S. Takata, Jpn. J. Appl. Phys., 24, L781 (1985). https://doi.org/10.1143/JJAP.24.L781
  8. K. Ellmer, J. Phys. D: Appl. Phys., 34, 3097 (2001). https://doi.org/10.1088/0022-3727/34/21/301
  9. S. Major, S. Kumar, M. Bhatnagar and K. L. Chopra, J. Phys. D: Appl. Phys., 33, R17 (2000). https://doi.org/10.1088/0022-3727/33/4/201
  10. H. Agura, A. Suzuki, T. Matsushita, T. Aoki and M. Okuda, Thin Solid Films, 445, 263 (2003). https://doi.org/10.1016/S0040-6090(03)01158-1
  11. S. Y. Kuo, W. C. Chen, F. I Lai, C. P. Cheng, H. C. Kuo, S. C. Wang and W. F. Hsieh, J. Cryst. Growth., 287, 78 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.047
  12. Z. Baji, Z. Labadi, Z. E. Horvath and I. Barsony, Thin Solid Films, 520, 4703 (2012). https://doi.org/10.1016/j.tsf.2011.10.113
  13. H. Q. Dai, H. Xu, Y.N. Zhou, L. Fang and Z.W. Fu, J. Phys. Chem. C., 116, 1519 (2012). https://doi.org/10.1021/jp208745n
  14. N. P. Dasqupta, S. Neubert, W. Y. Lee, O. Trejo, J. R. Lee and F. B. Prinz, Chem. Mater., 22, 4769 (2010). https://doi.org/10.1021/cm101227h
  15. Y. Y. Chen, P. W. Wang, J. C. Hsu and C. Y. Lee, Vacuum, 87, 227 (2013). https://doi.org/10.1016/j.vacuum.2012.02.054
  16. R. N. Chauhan, N. Tiwari, R. S. Anand and J. Kumar, RSC Adv., 6, 86770 (2016). https://doi.org/10.1039/C6RA14124B
  17. K. Wasa, M. Kitabatake and H. Adachi, Thin Film Materials Technolgy, p. 72, Springer & William Andrew Pub., NY, USA (2004).
  18. H.-W. Park, J.-H. Bang, K.-N. Huia and P.-K. Song, J. Kor. Inst. Surf. Eng.(in korea), 44, 250 (2011). https://doi.org/10.5695/JKISE.2011.44.6.250
  19. Y. Igasaki and H. Saito, Thin Solid Films, 199, 223 (1991). https://doi.org/10.1016/0040-6090(91)90004-H
  20. A. Wang, T. Chen, S. Lu, Z. Wu, Y. Li, H. Chen and Y. Wang, Nanoscale Res. Lett., 10, 75 (2015). https://doi.org/10.1186/s11671-015-0801-y
  21. W. Wang, T. Ao, W. Li, R. Jing, Y. Fei and X. Feng, J. Phys. Chem. C, 121, 28148 (2017). https://doi.org/10.1021/acs.jpcc.7b08181