DOI QR코드

DOI QR Code

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film

2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상

  • Lee, Hyo Seok (Department of Materials Science and Engineering, and Optoelectronic Convergence Research Center, Chonnam National University) ;
  • Cho, Jae Yu (Department of Materials Science and Engineering, and Optoelectronic Convergence Research Center, Chonnam National University) ;
  • Youn, Sung-Min (Korea Institute of Industrial Technology) ;
  • Jeong, Chaehwan (Korea Institute of Industrial Technology) ;
  • Heo, Jaeyeong (Department of Materials Science and Engineering, and Optoelectronic Convergence Research Center, Chonnam National University)
  • 이효석 (전남대학교 광전자융합기술연구소 신소재공학과) ;
  • 조재유 (전남대학교 광전자융합기술연구소 신소재공학과) ;
  • 윤성민 (한국생산기술연구원 스마트에너지나노융합연구그룹) ;
  • 정채환 (한국생산기술연구원 스마트에너지나노융합연구그룹) ;
  • 허재영 (전남대학교 광전자융합기술연구소 신소재공학과)
  • Received : 2020.09.23
  • Accepted : 2020.09.28
  • Published : 2020.10.27

Abstract

In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

Keywords

References

  1. T. D. Lee and A. U. Ebong, Renewable Sustainable Energy Rev., 70, 1286 (2017). https://doi.org/10.1016/j.rser.2016.12.028
  2. B. P. Jelle and C. Breivik, Energy Procedia, 20, 78, (2012). https://doi.org/10.1016/j.egypro.2012.03.010
  3. N. E. I. Boukortt and S. Patane, Optik (Munich, Ger.)., 218, 165240, (2020). https://doi.org/10.1016/j.ijleo.2020.165240
  4. M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita and A. W. Y. Ho-Baillie, Prog. Photovoltaics., 27, 565, (2019). https://doi.org/10.1002/pip.3171
  5. R. Noufi and K. Zweibel, in Proceedings of IEEE 4th World Conference on Photovoltaic Energy Conversion (Wailoloa, Hawaii, May 2006).
  6. P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang and R.G. Gordon, Adv. Energy Mater., 4, 1400496 (2014). https://doi.org/10.1002/aenm.201400496
  7. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J. M. Cairney, N. J. Ekins-Daukes, Z. Hameiri, J. A. Stride, S. Chen, M. A. Green and X. Hao, Nat. Energy, 3, 764 (2018). https://doi.org/10.1038/s41560-018-0206-0
  8. S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov and D. B. Mitzi, Energy Environ. Sci., 5, 7060 (2012). https://doi.org/10.1039/c2ee00056c
  9. D.-H. Son, S.-H. Kim, S.-Y. Kim, Y.-I. Kim, J.-H. Sim, S.-N. Park, D.-H. Jeon, D.-K. Hwang, S.-J. Sung, J.-K. Kang, K.-J. Yang and D.-H. Kim, J. Mater. Chem. A, 7, 25279 (2019). https://doi.org/10.1039/C9TA08310C
  10. L. Wang, D.-B. Li, K. Li, C. Chen, H.-X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu and J. Tang, Nat. Energy, 2, 17046 (2017). https://doi.org/10.1038/nenergy.2017.46
  11. B. H. Lee, H. S. Yoo, J. S. Jang, I. J. Lee, J. H. Kim, E. A. Jo and J. H. Kim, Korean J. Mater. Res. 29, 553 (2019). https://doi.org/10.3740/MRSK.2019.29.9.553
  12. C. Wadia, A. P. Alivisatos and D. M. Kammen, Environ. Sci. Technol., 43, 2072 (2009). https://doi.org/10.1021/es8019534
  13. A. Zakutayev, Green Sustainable Chem., 4, 8 (2017). https://doi.org/10.1016/j.cogsc.2017.01.002
  14. S. Sharma, K. K. Jain and A. Sharma, Mater. Sci. Appl., 06, 1145 (2015).
  15. R. E. Banai, M. W. Horn and J. R. S. Brownson, Sol. Energy Mater. Sol. Cells., 150, 112 (2016). https://doi.org/10.1016/j.solmat.2015.12.001
  16. P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock and R. G. Gordon, Adv. Energy Mater., 1, 1116 (2011). https://doi.org/10.1002/aenm.201100330
  17. Y. Kawano, J. Chantana and T. Minemoto, Curr. Appl. Phys., 15, 897 (2015). https://doi.org/10.1016/j.cap.2015.03.026
  18. R. E. Agbenyeke, S. Song, B. K. Park, G. H. Kim, J. H. Yun, T.-M. Chung, C. G. Kim and J. H. Han, Prog. Photovoltaics, 26, 745 (2018). https://doi.org/10.1002/pip.3012
  19. S. Sinha, D. K. Nandi, S.-H. Kim and J. Heo, Sol. Energy Mater. Sol. Cells., 176, 49 (2018). https://doi.org/10.1016/j.solmat.2017.09.044
  20. P. S. Pawar, J. Y. Cho, K. E. Neerugatti, S. Sinha, T. R. Rana, S. Ahn and J. Heo, ACS Appl. Mater. Interfaces., 12, 7001 (2020). https://doi.org/10.1021/acsami.9b14329
  21. T. Miyawaki and M. Ichimura, Mater. Lett., 61, 4683 (2007). https://doi.org/10.1016/j.matlet.2007.03.006
  22. T. Ikuno, R. Suzuki, K. Kitazumi, N. Takahashi, N. Kato and K. Higuchi, Appl. Phys. Lett., 102, 193901 (2013). https://doi.org/10.1063/1.4804603
  23. U. Rau and M. Schmidt, Thin Solid Films, 387, 141 (2001). https://doi.org/10.1016/S0040-6090(00)01737-5
  24. L. Weinhardt, C. Heske, E. Umbach, T. P. Niesen, S. Visbeck and F. Karg, Appl. Phys. Lett., 84, 3175 (2004). https://doi.org/10.1063/1.1704877
  25. J. H. Shi, S. M. Huang, J. B. Chu, H. B. Zhu, Z. A. Wang, X. D. Li, D. W. Zhang, Z. Sun, W. J. Cheng, F. Q. Huang and X. J. Yin, J. Mater. Sci.: Mater. Electron., 21, 1005 (2009).
  26. D. Lim, H. Suh, M. Suryawanshi, G. Y. Song, J. Y. Cho, J. H. Kim, J. H. Jang, C.-W. Jeon, A. Cho, S. Ahn and J. Heo, Adv. Energy Mater., 8, 1702605 (2018). https://doi.org/10.1002/aenm.201702605
  27. D. Lee, J. Y. Cho, H.-S. Yun, D.-K. Lee, T. Kim, K. Bang, Y. S. Lee, H.-Y. Kim and J. Heo, J. Mater. Chem. A, 7, 7186 (2019). https://doi.org/10.1039/C8TA09820D
  28. T. M. Elmorsi, M. H. Elsayed and M. F. Bakr, Can. J. Chem., 95, 590 (2017). https://doi.org/10.1139/cjc-2016-0456
  29. S. K. Mahadeva, J. Fan, A. Biswas, K. S. Sreelatha, L. Belova and K. V. Rao, Nanomaterials, 3, 486 (2013). https://doi.org/10.3390/nano3030486
  30. H. K. Yu and J.-L. Lee, Cryst. Growth Des., 10, 5200 (2010). https://doi.org/10.1021/cg101001e
  31. S. Sirohi and T. P. Sharma, Opt. Mater., 13, 267 (1999). https://doi.org/10.1016/S0925-3467(98)00084-6
  32. V. Srikant and D. R. Clarke, J. Appl. Phys., 83, 5447 (1998). https://doi.org/10.1063/1.367375
  33. D. M. Roessler and W. C. Walker, Phys. Rev., 159, 733 (1967). https://doi.org/10.1103/PhysRev.159.733
  34. D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. vanHest, R. T. Collins and D. S. Ginley, Adv. Funct. Mater., 17, 264 (2007). https://doi.org/10.1002/adfm.200600215
  35. T. Minemoto, Y. Hashimoto, T. Satoh, T. Negami, H. Takakura and Y. Hamakawa, J. Appl. Phys., 89, 8327 (2001). https://doi.org/10.1063/1.1366655
  36. S. Mohammadnejad, Z. M. Bahnamiri and S. E. Maklavani, Superlattices Microstruct., 144, 106587 (2020). https://doi.org/10.1016/j.spmi.2020.106587
  37. S. S. Hegedus and W. N. Shafarman, Prog. Photovoltaics, 12, 155 (2004). https://doi.org/10.1002/pip.518
  38. K. Yoshino, S. Oyama and M. Yoneta, J. Mater. Sci.: Mater. Electron., 19, 203 (2007).
  39. A. Kaushal and D. Kaur, Sol. Energy Mater. Sol. Cells., 93, 193 (2009). https://doi.org/10.1016/j.solmat.2008.09.039