DOI QR코드

DOI QR Code

Study on the Performance Verification of PRB Isolation Device using Simulation and Experiment

PRB 지진격리장치의 성능 검증을 위한 해석 및 실험적 연구

  • Kim, Sung-Jo (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Se-Yun (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Ji, Yongsoo (Pentad Inc.) ;
  • Kim, Bongsik (Pentad Inc.) ;
  • Han, Tong-Seok (Department of Civil and Environmental Engineering, Yonsei University)
  • 김성조 (연세대학교 건설환경공학과 대학원) ;
  • 김세윤 (연세대학교 건설환경공학과 대학원) ;
  • 지용수 ((주)펜타드) ;
  • 김봉식 ((주)펜타드 연구소) ;
  • 한동석 (연세대학교 건설환경공학과)
  • Received : 2020.06.03
  • Accepted : 2020.07.15
  • Published : 2020.10.31

Abstract

This study introduces a technique for improving the elastomeric-isolator performance using modular devices. The modular devices are shear resistance block, polymer spring, displacement acceptance guide, and anti-falling block. They are installed on the elastomeric isolator as a supplementary device. Each modularized device improves the isolator performance by performing step-by-step actions according to the seismic intensity and displacement. The PRB isolation device works in four stages, depending on the seismic magnitude, to satisfy the target performance. It is designed to accommodate design displacement in the first stage and large magnitude of earthquakes in the second and third stages. This design prevents superstructures from falling in the fourth stage due to large-magnitude earthquakes by increasing the capacity limit of the elastomeric isolator. In this study, the PRB isolation device is analyzed using finite element analysis to verify that the PRB isolation device works as intended and it can withstand loads corresponding to large-magnitude earthquakes. The performance of the PRB isolation device is validated by the analysis, which is further corroborated by actual experiments.

본 논문에서는 모듈화(Module)된 부품을 활용한 탄성받침 성능개선기법에 대하여 소개하였다. 각각의 모듈화된 장치들이 지진 강도 및 이동 변위에 따른 단계별 거동을 함으로써 받침의 성능을 개선하게 된다. 모듈화된 장치들은 초기전단저항 블럭, 완충장치, 변위수용가이드, 낙교방지블럭이 있으며, 탄성받침에 추가적으로 적용되었다. 이 장치는 지진의 규모에 따라 4단계로 거동하며, 1차로 설계변위를 수용하고, 2차, 3차에서는 대규모 지진을 수용하며, 4차로는 대규모의 지진에 대해서 낙교방지가 가능하도록 설계되어 탄성받침의 용량 제한을 증가시킨다. 본 논문에서는, 개발기술인 PRB 지진격리장치를 유한요소해석을 통해 해석하여 격리장치의 이론적인 거동이 구현되는지와, 대규모 지진에 해당하는 하중을 견딜 수 있는지 확인하였다. 그리고 이를 바탕으로 실험을 통해 성능평가를 진행하여 두 결과의 비교 분석을 통해 PRB 지진격리장치가 탄성받침의 성능을 개선할 수 있는지 검증하였다.

Keywords

References

  1. ABAQUS, Version 6.14 (2016) Online Documentation Help, Theory Manual: Dassault Systemes.
  2. Gajewskia, M., Szczerbab, R., Jemioloa, S. (2015) Modelling of Elastomeric Bearings with Application of Yeoh Hyperelastic Material Model, Procedia Eng., 111, pp.220-227. https://doi.org/10.1016/j.proeng.2015.07.080
  3. Hu, X.-Z., Wittmann, F.H. (1992) Fracture Energy and Fracture Process Zone, Mater. & Struct., 25, pp.319-326. https://doi.org/10.1007/BF02472590
  4. Keum, D.H., Noh, P.S., Kim, J.U. (1994) A Study on the Improvement of Earthquake Resistant Design Code, Archit. Inst. Korea, pp.435-440.
  5. Khelifa, M., Oudjene, M., Khennanec, A. (2007) Fracture in Sheet Metal Forming: Effect of Ductile Damage Evolution, Comput. & Struct., 85(3-4), pp.205-212. https://doi.org/10.1016/j.compstruc.2006.08.053
  6. Kim, J.S., Jung, J.P., Moon, J.H., Lee, T.H., Kim, J.H., Han, T.S. (2019) Seismic Fragility Analysis of Base-Isolated LNG Storage Tank for Selecting Optimum Friction Material of Friction Pendulum System, Earthq. & Tsunami, 13(2), p.28.
  7. KS F 4420 (2018) Steel-Laminated Elastomeric Bearings for Bridge.
  8. Lee, K.K., Kim, H.D., Choi, S.M. (2017) Major Revision of Material Part of Design Standards for Structural Steel Buildings According to change of KS, Maga. & J. Korean Soc. Steel Constr., 29(5), pp.7-11.
  9. Priestley, M.J.N. (2000) Performance based Seismic Design, New Zealand Soc. Earthq. Eng., 33(3), pp.325-346. https://doi.org/10.5459/bnzsee.33.3.325-346
  10. Prior, A.M. (1994) Applications of Implicit and Explicit Finite Element Techniques to Metal Forming, Mater. Proc. Technol., 45(1-4), pp.649-656. https://doi.org/10.1016/0924-0136(94)90413-8
  11. Ruzicka, J., Spaniel, M., Prantl, A., Dzugan, J., Kuzelka, J., Moravec, M. (2013) Identification of Ductile Damage Parameters in the Abaqus, Bull. Appl. Mech., 9, p.89.
  12. Sarva, S.S., Deschanel, S., Boyce, M.C., Chen, W. (2007) Stress-Strain Behavior of a Polyurea and a Polyurethane from Low to High Strain Rates, Polymer, 48(8), pp.2208-2213. https://doi.org/10.1016/j.polymer.2007.02.058
  13. Shahzad, M., Kamran, A., Siddiqui, M.Z., Farhan, M. (2015) Mechanical Characterization and FE Modelling of a Hyperelastic Material, Mater. Res., 18(5), pp.918-924. https://doi.org/10.1590/1516-1439.320414
  14. Sun, J.S., Lee, K.H., Lee, H.P. (2000) Comparison of implicit and explicit finite element methods for dynamic problems, Mater. Proc. Technol., 105(1-2), pp.110-118. https://doi.org/10.1016/S0924-0136(00)00580-X