DOI QR코드

DOI QR Code

Automatic Construction of SHACL Schemas for RDF Knowledge Graphs Generated by Direct Mappings

  • Choi, Ji-Woong (School of Computer Science and Engineering, Soongsil University)
  • Received : 2020.09.03
  • Accepted : 2020.09.22
  • Published : 2020.10.30

Abstract

In this paper, we proposes a method to automatically construct SHACL schemas for RDF knowledge graphs(KGs) generated by Direct Mapping(DM). DM and SHACL are all W3C recommendations. DM consists of rules to transform the data in an RDB into an RDF graph. SHACL is a language to describe and validate the structure of RDF graphs. The proposed method automatically translates the integrity constraints as well as the structure information in an RDB schema into SHACL. Thus, our SHACL schemas are able to check integrity instead of RDBMSs. This is a consideration to assure database consistency even when RDBs are served as virtual RDF KGs. We tested our results on 24 DM test cases, published by W3C. It was shown that they are effective in describing and validating RDF KGs.

본 논문에서는 Direct Mapping(DM) 방식으로 생성된 RDF 지식 그래프에 대한 SHACL 스키마를 RDB 스키마로부터 자동 생성하는 방법을 제안한다. DM과 SHACL은 모두 W3C 표준 사양이다. DM은 RDB 데이터를 RDF 그래프로 변환하기 위한 규칙들로 구성되어 있다. SHACL은 RDF 그래프의 구조 묘사와 구조 검증을 위한 언어이다. 제안하는 방법은 RDB 스키마의 구조 정보뿐 아니라 무결성 제약조건을 SHACL로 자동 번역한다. 즉, 자동 생성된 SHACL 스키마는 RDBMS를 대신하여 무결성 제약조건 위배 여부를 검증할 수 있다. 이것은 RDB가 RDF 표현의 가상 지식 그래프로서 서비스되는 상황에서도 데이터베이스의 일관성을 보장하기 위한 고려이다. 자동 생성된 SHACL 스키마를 W3C가 발표한 24가지 DM 테스트 케이스에 적용하여 RDF 그래프의 구조 설명과 검증에 있어서 유효함을 보였다.

Keywords

References

  1. H. Paulheim, "Knowledge graph refinement: A survey of approaches and evaluation methods," Semantic Web, Vol. 8, No. 3, pp. 489-508, Dec. 2017. DOI: 10.3233/SW-160218
  2. Q. Xu, X. Wang, J. Li, Q. Zhang, and L. Chai, "Distributed Subgraph Matching on Big Knowledge Graphs Using Pregel," IEEE Access, Vol. 7, pp. 116453-116464, August 2019. DOI: 10.1109/ACCESS.2019.2936465
  3. H. Arnaout and S. Elbassuoni, "Effective searching of RDF knowledge graphs," Journal of Web Semantics, Vol. 48, pp. 66-84, Jan. 2018. DOI: 10.1016/j.websem.2017.12.001
  4. J. Z. Pan, G. Vetere, J. M. Gomez-Perez, and H. Wu, "Exploiting Linked Data and Knowledge Graphs in Large Organisations," Springer, Cham, pp. 147-180, 2017.
  5. W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao, "Semantic SPARQL similarity search over RDF knowledge graphs," Proceedings of the VLDB Endowment, Vol. 9, No. 11, pp. 840-851, July 2016. DOI: 10.14778/2983200.2983201
  6. H. Knublauch and D. Kontokostas, "Shapes Constraint Language (SHACL)," https://www.w3.org/TR/shacl/
  7. H. Paulheim, "Machine Learning with and for Semantic Web Knowledge Graphs," Reasoning Web. Learning, Uncertainty, Streaming, and Scalability, pp 110-141, Esch-sur-Alzette, Luxembourg, September, 2018. DOI: 10.1007/978-3-030-00338-8_5.
  8. D. Buscaldi, D. Dess, E. Motta, F. Osborne, and D. R. Recupero, "Mining scholarly data for fine-grained knowledge graph construction," Proceedings of the Workshop on Deep Learning for Knowledge Graphs Co-located with the 16th Extended Semantic Web Conference 2019, pp. 21-30, Portoroz, Slovenia, June, 2019.
  9. O. Corcho, F. Priyatna and D. Chaves-Fraga, "Towards a New Generation of Ontology Based Data Access," Semantic Web, Vol. 11, No. 1, pp. 153-160, January 2020. DOI: 10.3233/SW-190384
  10. M. Arenas, A. Bertails, E. Prud'hommeaux, and J. Sequeda, "A Direct Mapping of Relational Data to RDF," http://www.w3.org/TR/rdb-direct-mapping/
  11. S. Das, S. Sundara, and R. Cyganiak, "R2RML: RDB to RDF Mapping Language," http://www.w3.org/TR/r2rml/
  12. G. Xiao, L. Ding, B. Cogrel, and D. Calvanese, "Virtual Knowledge Graphs: An overview of systems and use cases," Data Intelligence, vol. 1, no. 3, pp. 201-223, May, 2019. DOI: 10.1162/dint_a_00011
  13. B. Motik, P. F. Patel-Schneider, and B. Parsia, "OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax (Second Edition)," http://www.w3.org/TR/owl-syntax/
  14. J. F. Sequeda, M. Arenas, and D. P. Miranker, "On directly mapping relational databases to RDF and OWL," Proceedings of the 21st international conference on World Wide Web, pp. 649-658, Lyon, France, April 2012. DOI: 10.1145/2187836.2187924
  15. E. Jimenez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel, M. G. Skjaeveland, E. Thorstensen, and J. Mora, "BootOX: Practical Mapping of RDBs to OWL 2," The Semantic Web - ISWC 2015, pp. 113-132, Bethlehem, USA, October 2015. DOI: 10.1007/978-3-319-25010-6_7
  16. M. R. A. Rashid, G. Rizzo, M. Torchiano, N. Mihindukulasooriya, O. Corcho, and R. Garcia-Castro, "Completeness and consistency analysis for evolving knowledge bases," Journal of Web Semantics, Vol 54, pp. 48-71, January 2019. DOI: 10.1016/j.websem.2018.11.004.
  17. M. O'Connor and A. Das, "SQWRL: a query language for OWL," Proceedings of the 6th International Conference on OWL: Experiences and Directions - Volume 529, pp. 208-215, Chantilly, USA, October 2009. DOI: 10.5555/2890046.2890072
  18. I. Kollia, B. Glimm, and I. Horrocks, "SPARQL Query Answering over OWL Ontologies," Proceedings of the 8th Extended Semantic Web Conference on The Semantic Web: Research and Applications - Volume Part I, pp. 382-396, Heraklion, Greece, May 2011. DOI: 10.1007/978-3-642-21034-1_26
  19. E. Sirin and B. Parsia, "SPARQL-DL: SPARQL Query for OWL-DL," Proceedings of the OWLED 2007 Workshop on OWL: Experiences and Directions, Innsbruck, Austria, June 2007.
  20. D. Peterson, S. Gao, A. Malhotra, C. M. Sperberg-McQueen, and H. S. Thompson, "W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes," http://www.w3.org/TR/xmlschema11-2/
  21. B. Villazon-Terrazas and M. Hausenblas, "R2RML and Direct Mapping Test Cases," https://www.w3.org/TR/rdb2rdf-test-cases/
  22. J. E. L. Gayo, H. Knublauch and D. Kontokostas, "SHACL Test Suite and Implementation Report," https://w3c.github.io/data-shapes/data-shapes-test-suite/