DOI QR코드

DOI QR Code

Functional characterization of domestic and foreign green tea cultivars at different harvest periods

채취시기가 다른 국내외 녹차잎의 기능성분 함량, 뇌세포 생존 및 대사 효소 활성 조절 효과 조사

  • Lee, Bang-Hee (Department of Applied Biology Graduate School, Chonnam National University) ;
  • Jeon, Sae Hyun (Department of Food Science & Technology, Chonnam National University) ;
  • Jeong, Hana (Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Choi, Jung (Tea Industry Institute, Jeonnam Agricultural Research & Extension Services) ;
  • Kim, Young-Min (Department of Food Science & Technology, Chonnam National University) ;
  • Yang, Kwang-Yeol (Department of Applied Biology Graduate School, Chonnam National University) ;
  • Nam, Seung-Hee (Department of Food Science & Technology, Chonnam National University)
  • 이방희 (전남대학교 응용생물학과) ;
  • 전세현 (전남대학교 식품공학과) ;
  • 정하나 (전남대학교 농업과학기술연구소) ;
  • 최정 (전남농업기술원 차산업연구소) ;
  • 김영민 (전남대학교 식품공학과) ;
  • 양광열 (전남대학교 응용생물학과) ;
  • 남승희 (전남대학교 식품공학과)
  • Received : 2020.07.22
  • Accepted : 2020.08.31
  • Published : 2020.10.31

Abstract

This study was performed to compare nutritional compounds and physiological functions of five domestic and imported green tea cultivars at three time points. The five cultivars were compared for theanine, γ-aminobutyric acid, and catechin content by LC-MS/MS and HPLC. Furthermore, the five tea cultivars were functionally characterized with respect to antioxidant activity, brain cell protective effect, and inhibitions of α-glucosidase and HMG-CoA reductase activities. Among green tea cultivars, Chamnok had the highest content of catechins (198 mg/g DW), theanine (11.89 mg/g DW), and tannin (23.6 mg/g DW). Considering functional properties, Chamnok treatment resulted in the maximum viability of brain cells and reduced the cortisol content of SH-SY5Y cells. The inhibition of α-glucosidase and HMG-CoA reductase was the strongest following Chamnok treatment (72.9% and 69.8%, respectively). These results indicate that Chamnok could be optimal for consumption or favorable processing owing to its high nutritional compounds, such as theanine and catechin, and remarkable brain cell protective effects.

본 연구에서는 녹차 국내종(보향, 참녹), 외래종(후슌, 야부기다)의 채취시기를 달리하여 테아닌, GABA 등 유용 성분 함량을 분석하였고, 항산화능, α-glucosidase 활성 억제, HMG-CoA 저해도, 세포독성 측정, 뇌 신경세포 보호 효과, 항 스트레스 효과를 조사하여 유용 성분과의 상관성을 파악하고자 하였다. 테아닌과 GABA 함량은 모든 품종에서 채취시기가 늦어질수록 함량이 감소하는 경향을 나타내었다. 총 아미노산 함량에서는 채엽시기가 늦어질수록 보향 품종에서 증가하는 경향을 나타내었고 후슌, 야부기다 그리고 참녹은 여름차에서 감소 후 다시 가을차에서 증가하는 경향을 보였다. 총페놀과 플라보노이드의 함량과 항산화능을 조사했을 때 ABTS는 후슌, 보향, 참녹에서 플라보노이드 농도와 비례하는 경향을 보였으며, 재래 녹차와 야부기다는 총페놀의 농도와 비례하는 경향을 나타내었다. DPPH radical 소거능은 참녹을 제외한 모든 시료에서 여름차의 활성이 가장 높고 가을차에서 활성이 다시 감소하는 것을 확인하였다. 카테킨류 측정에서 EGCg 함량은 카테킨류에서 50% 이상을 차지했고, 총 카테킨 함량과 Ecg, EGCg는 종과 관계없이 채취 시기가 늦어질수록 증가하는 경향을 보였으며 EGC는 감소하는 경향을 보였다. 품종별 봄, 여름, 가을차를 시료로 하여 측정한 α-glucosidase 저해 활성과 HMG-CoA reductase 저해능은 채취 시기가 늦어질수록 증가함을 보였고 그 중 가을에 채취한 참녹에서의 저해 활성이 각각 72.93%, 69.78%로 두 저해능 측정에서 가장 높은 저해활성을 보였다. 또한 뇌신경세포(SH-SY5Y)를 이용한 세포 독성 측정에서 참녹 품종이 96.34%로 가장 높은 세포생존율을 보였고 항스트레스 측정에서 269.2 ng/mL로 가장 낮은 cortisol 함량이 확인되었다.

Keywords

References

  1. Abe Y, Umemura S, Sugimoto K, Hirawa N, Kato Y, Yokoyama N, Yokoyama T, Iwai J, Ishii M. Effect of green tea rich in $\gamma$-aminobutyric acid on blood pressure of Dahl salt-sensitive rats. Am. J. Hypertens. 8: 74-79 (1995) https://doi.org/10.1016/0895-7061(94)00141-W
  2. Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. 104: 1338-1344 (2007) https://doi.org/10.1016/j.foodchem.2007.01.047
  3. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  4. Byun JO, Han JS. A study on perception and actual status of utilization for green tea. Korean J. Food Culture. 19: 184-192 (2004)
  5. Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS. Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology. 29: 656-662 (2008) https://doi.org/10.1016/j.neuro.2008.03.004
  6. Choi CY, Park EH, Joo YW, Kim MD. Increase of epigallocatechin in green tea extract by lactic acid bacteria fermentation. Microbiol. Biotechnol. Lett. 44: 62-67 (2016) https://doi.org/10.4014/mbl.1511.11015
  7. Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J. Nutr. 134: 3431-3440 (2004)
  8. Dimsdale JE, Moss J. Short-term catecholamine response to psychological stress. Psychosom. Med. 42: 493-497 (1980) https://doi.org/10.1097/00006842-198009000-00003
  9. Duval B, Shetty K. The stimulation of phenolics and antioxidant activity in pea (Pisum sativam) elicited by genetically transformed anise root extract. J. Food Biochem. 25: 361-377 (2001) https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  10. Faria A, Pestana D, Teixeira D, Couraud PO. Romero I, Weksler B, Freitas V de, Mateus N, Calhau C. Insights into the putative catechin and epicatechin transport across blood-brain barrier. Food Funct. 2: 39-44, 2042-6496 (2011) https://doi.org/10.1039/C0FO00100G
  11. Ha TY, Cho IJ, Lee SH. Screening of HMG-CoA reductase Inhibitory activity of ethanol and methanol extracts from cereals and regumes. Korean J. Food Sci. Technol. 30: 224-229 (1998)
  12. Hakamata W, Nakanishi I, Masuda Y, Shimizu T, Higuchi H, Nakamura Y, Saito S, Urano S, Oku T, Ozawa T, Ikota N, Miyata N, Okuda H, Fukuhara K. Planar catechin analogues with alkyl side chains: a potent antioxidant and an $\alpha$-glucosidase inhibitor. J. Am. Chem. Soc. 128: 6524-6525 (2006) https://doi.org/10.1021/ja057763c
  13. Han YS. Gamma-aminobutyric acid content in commercial green tea. Korean J. Food Cook. Sci. 23: 409-412 (2007)
  14. Han SK, Song YS, Lee JS, Bang JK, Suh SJ, Cho JY, Moon JH, Park KH. Changes of the chemical constituents and antioxidant activity during microbial-fermented tea (Camellia sinensis L.) processing. Korean J. Food Sci. Technol. 42: 21-26 (2010)
  15. Ikonomovic S, Kharlamov E, Manev H, Ikonomovic MD, Grayson DR. GABA and NMDA in the prevention of apoptotic-like cell death in vitro. Neurochemistry Int. 31: 283-290 (1997) https://doi.org/10.1016/S0197-0186(96)00159-3
  16. Jang JS, Lee BS, Kim YG. Changes in $\gamma$-aminobutyric acid (GABA) and the main constituents by a treatment conditions and of anaerobically treated green tea leaves. Korean J. Food Sci. Technol. 24: 315-319 (1992)
  17. Kang SK, Shon MY. Changes of bioactive compounds and antioxidant activities in Korean Green Tea (Camellia sinensis) with different harvesting periods. Korean J. Food Preserv. 14: 709-715 (2007)
  18. Kao YH, Chang HH, Lee MJ, Chen CL. Tea, obesity, and diabetes. Mol. Nutr. Food Res. 50: 188-210 (2006) https://doi.org/10.1002/mnfr.200500109
  19. Kim BK, Park CE, Park KJ, Lim JH, Jeong JW, Jeong SW, Cho CW. Antioxidant and Antimicrobial Activities of Green Tea at Different Harvest Time. J. East Asian Soc. Diet. Life. 19: 570-578 (2009)
  20. Kim BS. Comparison of caffeine, free amino acid, vitamin C and catechins content of commercial green tea in Bosung, Sunchon, Kwangyang, Hadong. J. Korean Tea Soc. 8: 55-62 (2002)
  21. Kim YS, Hwang JW, Park PJ, Jeong JH. Antioxidant activity and protective effects of extracts from chrysanthemum boreale on t-BHP induced oxidative stress in Chang cells. J. Korean Soc. Food Sci. Nutr. 43: 60-66 (2014) https://doi.org/10.3746/jkfn.2014.43.1.060
  22. Kim S, Yoon SW. Analytical study for the effects of green tea with GABA about the brain wave and short-term memory. J. Korean Jungshin Sci. Soc. 2: 84-91 (1998)
  23. Lipton SA, Choi YB, Pan ZH Lei SZ, Chen HS V, Sucher NJ, Loscalzo J, Single DJ, Stamier JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 364: 626-632 (1993) https://doi.org/10.1038/364626a0
  24. Liu S, Ai Z, Qu F, Chen Y, Ni D. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against $\alpha$-amylase, $\alpha$-glucosidase and intestinal glucose uptake. Food chem. 234: 168-173 (2017) https://doi.org/10.1016/j.foodchem.2017.04.151
  25. Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB. Multifunctional activities of green tea catechins in neuroprotection. Neurosignals. 14: 46-60 (2005) https://doi.org/10.1159/000085385
  26. Matsui T, Tanaka T, Tamura S, Toshima A, Tamaya K, Miyata Y, Tanaka K, Matsumoto K. $\alpha$-glucosidase inhibitory profile of catechins and theaflavins. J. Agr. Food Chem. 55: 99-105 (2007) https://doi.org/10.1021/jf0627672
  27. Moon YJ, Yeom KH, Sung CK. Screening of 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors in vitro and its application to pullets. J. Korean Soc. Food Sci. Nutr. 15: 307-313 (2002)
  28. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65: 55-63 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  29. Moss AJ, Wynar B. Tachycardia in house officers presenting cases at grand rounds. Ann. Intern. Med. 72: 255-256 (1970) https://doi.org/10.7326/0003-4819-72-2-255
  30. Park JH. Effect of anaerobic treatments on the „aminobutyric acid and quality of green tea (Camellia sinensis var. sinensis). Korean J. Medicinal Crop. Sci. 9: 26-32 (2001)
  31. Park JD. Changes of some chemical compounds of Korean (Posong) green tea according to harvest periods. Korean J. Food Sci. Technol. 36: 542-546 (2004)
  32. Park SG, Kim TI, Lee WK, Park HK, Hong JT. Combination of green tea extract and L-theanine alleviates electric foot shock induced stress by modulating neurotransmitters in mice. Yakhak hoeji. 53: 241-249 (2009)
  33. Park JH, Kim YO, Nam SH, Kim JK. Effect of plucking season and days on main component content of green tea. J. Korean Tea Soc. 14: 167-174 (2008)
  34. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical. Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  35. Shin DS, Han GJ. Chemical compositions and antioxidant activities of Cheonnyuncho (Opuntia humifusa) stems and fruit. Korean J. Food Preserv. 23: 89-96 (2016) https://doi.org/10.11002/kjfp.2016.23.1.89
  36. Son KH, Lee JY. Lee JS, Kang SS, Sohn HY, Kwon CS. Screening of phenolic compounds with inhibitory activities against HMG-CoA reductase. J. Life Sci. 27: 325-333 (2017) https://doi.org/10.5352/JLS.2017.27.3.325
  37. Sung NY, Song HY, An DH, You YC, Byun EB, Jang BS, Park CH, Park WJ, Byun EH. Antioxidant and neuroprotective effects of green tea seed shell ethanol extracts. J. Korean Soc. Food Sci. Nutr. 45: 958-965 (2016) https://doi.org/10.3746/jkfn.2016.45.7.958
  38. Valsa AK, Ushajumari B, Vijayalakshmi NP. Effect of catechin on lipid metabolism. J. Clin. Biochem. Nutr. 19: 175-182 (1995) https://doi.org/10.3164/jcbn.19.175
  39. Wee JH, Moon JH, Park KH. Catechin content and composition of domestic tea leaves at different plucking time. Korean J. Food Sci. Technol. 31: 20-23 (1999)
  40. Woo HS, Choe HJ, Han HS, Park JH, Son JH, An BJ, Son GM, Choe C. Isolation of polyphenol from green tea by HPLC and its physiological activities. Korean J. Food Sci. Technol. 35: 1199-1203 (2003)
  41. Yang JK, Kim JC, Lee JK, Jo JS. The Changes of chemical composition of green tea by picking periods. J. Agric. Life Sci. 46: 49-61 (2012)
  42. Yang X, Kong F. Evaluation of the in vitro .glucosidase inhibitory activity of green tea polyphenols and different tea types. J. Sci. Food Agric. 96: 777-782 (2016) https://doi.org/10.1002/jsfa.7147
  43. Yilmazer MS, Griffith AM, Michels AJ, Schneider E. Frei B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of $\alpha$-amylase and $\alpha$-glucosidase activity. J. Agr. Food Chem. 60: 8924-8929 (2012) https://doi.org/10.1021/jf301147n