DOI QR코드

DOI QR Code

Extracellular matrixes and neuroinflammation

  • Jang, Dong Gil (School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Sim, Hyo Jung (School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Song, Eun Kyung (School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kwon, Taejoon (School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Park, Tae Joo (School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2020.07.23
  • Published : 2020.10.31

Abstract

The extracellular matrix is a critical component of every human tissue. ECM not only functions as a structural component but also regulates a variety of cellular processes such as cell migration, differentiation, proliferation, and cell death. In addition, current studies suggest that ECM is critical for the pathophysiology of various human diseases. ECM is composed of diverse components including several proteins and polysaccharide chains such as chondroitin sulfate, heparan sulfate, and hyaluronic acid. Each component of ECM exerts its own functions in cellular and pathophysiological processes. One of the interesting recent findings is that ECM is involved in inflammatory responses in various human tissues. In this review, we summarized the known functions of ECM in neuroinflammation after acute injury and chronic inflammatory diseases of the central nerve systems.

Keywords

References

  1. Novak U and Kaye AH (2000) Extracellular matrix and the brain: components and function. J Clin Neurosci 7, 280-290 https://doi.org/10.1054/jocn.1999.0212
  2. Ruoslahti E (1996) Brain extracellular matrix. Glycobiology 6, 489-492 https://doi.org/10.1093/glycob/6.5.489
  3. Celio MR, Spreafico R, De Biasi S and Vitellaro-Zuccarello L (1998) Perineuronal nets: past and present. Trends Neurosci 21, 510-515 https://doi.org/10.1016/S0166-2236(98)01298-3
  4. Deepa SS, Carulli D, Galtrey C et al (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281, 17789-17800 https://doi.org/10.1074/jbc.M600544200
  5. Song I and Dityatev A (2018) Crosstalk between glia, extracellular matrix and neurons. Brain Res Bull 136, 101-108 https://doi.org/10.1016/j.brainresbull.2017.03.003
  6. Lu P, Takai K, Weaver VM and Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3, a005058 https://doi.org/10.1101/cshperspect.a005058
  7. Bignami A, Hosley M and Dahl D (1993) Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anat Embryol (Berl) 188, 419-433 https://doi.org/10.1007/BF00190136
  8. Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57, 276-289 https://doi.org/10.1007/PL00000690
  9. Aspberg A, Miura R, Bourdoulous S et al (1997) The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci U S A 94, 10116-10121 https://doi.org/10.1073/pnas.94.19.10116
  10. Kearns AE, Campbell SC, Westley J and Schwartz NB (1991) Initiation of chondroitin sulfate biosynthesis: a kinetic analysis of UDP-D-xylose: core protein beta-D-xylosyltransferase. Biochemistry 30, 7477-7483 https://doi.org/10.1021/bi00244a016
  11. Vertel BM, Walters LM, Flay N, Kearns AE and Schwartz NB (1993) Xylosylation is an endoplasmic reticulum to Golgi event. J Biol Chem 268, 11105-11112 https://doi.org/10.1016/S0021-9258(18)82098-1
  12. Jonsson M, Eklund E, Fransson LA and Oldberg A (2003) Initiation of the decorin glycosaminoglycan chain in the endoplasmic reticulum-Golgi intermediate compartment. J Biol Chem 278, 21415-21420 https://doi.org/10.1074/jbc.M210977200
  13. Nuwayhid N, Glaser JH, Johnson JC, Conrad HE, Hauser SC and Hirschberg CB (1986) Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum. J Biol Chem 261, 12936-12941 https://doi.org/10.1016/S0021-9258(18)69252-X
  14. Moses J, Oldberg A and Fransson LA (1999) Initiation of galactosaminoglycan biosynthesis. Separate galactosylation and dephosphorylation pathways for phosphoxylosylated decorin protein and exogenous xyloside. Eur J Biochem 260, 879-884 https://doi.org/10.1046/j.1432-1327.1999.00228.x
  15. Glowacki A, Kozma EM and Olczyk K (2004) [Biosynthesis of keratan sulfate, chondroitin sulfate and dermatan sulfate proteoglycans]. Postepy Biochem 50, 170-181
  16. Gama CI, Tully SE, Sotogaku N et al (2006) Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2, 467-473 https://doi.org/10.1038/nchembio810
  17. Bobinski R, Olczyk K and Krzyzowska-Bobinska E (1998) [Hyaluronan aggregating proteoglycans]. Postepy Biochem 44, 245-251
  18. Ueno H, Fujii K, Suemitsu S et al (2018) Expression of aggrecan components in perineuronal nets in the mouse cerebral cortex. IBRO Rep 4, 22-37 https://doi.org/10.1016/j.ibror.2018.01.002
  19. Matthews RT, Kelly GM, Zerillo CA, Gray G, Tiemeyer M and Hockfield S (2002) Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci 22, 7536-7547 https://doi.org/10.1523/JNEUROSCI.22-17-07536.2002
  20. Afshari FT, Kwok JC, White L and Fawcett JW (2010) Schwann cell migration is integrin-dependent and inhibited by astrocyte-produced aggrecan. Glia 58, 857-869 https://doi.org/10.1002/glia.20970
  21. Giamanco KA, Morawski M and Matthews RT (2010) Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170, 1314-1327 https://doi.org/10.1016/j.neuroscience.2010.08.032
  22. Lundell A, Olin AI, Morgelin M, al-Karadaghi S, Aspberg A and Logan DT (2004) Structural basis for interactions between tenascins and lectican C-type lectin domains: evidence for a crosslinking role for tenascins. Structure 12, 1495-1506 https://doi.org/10.1016/j.str.2004.05.021
  23. Bruckner G, Brauer K, Hartig W et al (1993) Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8, 183-200 https://doi.org/10.1002/glia.440080306
  24. Morawski M, Bruckner MK, Riederer P, Bruckner G and Arendt T (2004) Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188, 309-315 https://doi.org/10.1016/j.expneurol.2004.04.017
  25. Hamel MG, Mayer J and Gottschall PE (2005) Altered production and proteolytic processing of brevican by transforming growth factor beta in cultured astrocytes. J Neurochem 93, 1533-1541 https://doi.org/10.1111/j.1471-4159.2005.03144.x
  26. John N, Krugel H, Frischknecht R et al (2006) Brevicancontaining perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures. Mol Cell Neurosci 31, 774-784 https://doi.org/10.1016/j.mcn.2006.01.011
  27. Yamagata M and Sanes JR (2005) Versican in the developing brain: lamina-specific expression in interneuronal subsets and role in presynaptic maturation. J Neurosci 25, 8457-8467 https://doi.org/10.1523/JNEUROSCI.1976-05.2005
  28. Naso MF, Zimmermann DR and Iozzo RV (1994) Characterization of the complete genomic structure of the human versican gene and functional analysis of its promoter. J Biol Chem 269, 32999-33008 https://doi.org/10.1016/S0021-9258(20)30090-9
  29. Schmalfeldt M, Dours-Zimmermann MT, Winterhalter KH and Zimmermann DR (1998) Versican V2 is a major extraellular matrix component of the mature bovine brain. J Biol Chem 273, 15758-15764 https://doi.org/10.1074/jbc.273.25.15758
  30. Wight TN, Kang I and Merrilees MJ (2014) Versican and the control of inflammation. Matrix Biol 35, 152-161 https://doi.org/10.1016/j.matbio.2014.01.015
  31. Yamada H, Watanabe K, Shimonaka M and Yamaguchi Y (1994) Molecular cloning of brevican, a novel brain proteoglycan of the aggrecan/versican family. J Biol Chem 269, 10119-10126 https://doi.org/10.1016/S0021-9258(17)36998-3
  32. Seidenbecher CI, Richter K, Rauch U, Fassler R, Garner CC and Gundelfinger ED (1995) Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms. J Biol Chem 270, 27206-27212 https://doi.org/10.1074/jbc.270.45.27206
  33. Frischknecht R and Seidenbecher CI (2012) Brevican: a key proteoglycan in the perisynaptic extracellular matrix of the brain. Int J Biochem Cell Biol 44, 1051-1054 https://doi.org/10.1016/j.biocel.2012.03.022
  34. McKeon RJ, Jurynec MJ and Buck CR (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19, 10778-10788 https://doi.org/10.1523/JNEUROSCI.19-24-10778.1999
  35. Rauch U, Karthikeyan L, Maurel P, Margolis RU and Margolis RK (1992) Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J Biol Chem 267, 19536-19547 https://doi.org/10.1016/S0021-9258(18)41808-X
  36. Muhleisen TW, Mattheisen M, Strohmaier J et al (2012) Association between schizophrenia and common variation in neurocan (NCAN), a genetic risk factor for bipolar disorder. Schizophr Res 138, 69-73 https://doi.org/10.1016/j.schres.2012.03.007
  37. Oruc L, Kapur-Pojskic L, Ramic J, Pojskic N and Bajrovic K (2012) Assessment of relatedness between neurocan gene as bipolar disorder susceptibility locus and schizophrenia. Bosn J Basic Med Sci 12, 245-248 https://doi.org/10.17305/bjbms.2012.2446
  38. Sun D and Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. Neuroscientist 18, 567-588 https://doi.org/10.1177/1073858411423441
  39. Pekny M, Wilhelmsson U and Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565, 30-38 https://doi.org/10.1016/j.neulet.2013.12.071
  40. Colombo E and Farina C (2016) Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol 37, 608-620 https://doi.org/10.1016/j.it.2016.06.006
  41. Pekny M and Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50, 427-434 https://doi.org/10.1002/glia.20207
  42. Schachtrup C, Ryu JK, Helmrick MJ et al (2010) Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci 30, 5843-5854 https://doi.org/10.1523/JNEUROSCI.0137-10.2010
  43. Schiller M, Javelaud D and Mauviel A (2004) TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 35, 83-92 https://doi.org/10.1016/j.jdermsci.2003.12.006
  44. Susarla BT, Laing ED, Yu P, Katagiri Y, Geller HM and Symes AJ (2011) Smad proteins differentially regulate transforming growth factor-beta-mediated induction of chondroitin sulfate proteoglycans. J Neurochem 119, 868-878 https://doi.org/10.1111/j.1471-4159.2011.07470.x
  45. Jahan N and Hannila SS (2015) Transforming growth factor beta-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways. Exp Neurol 263, 372-384 https://doi.org/10.1016/j.expneurol.2014.10.023
  46. Monnier PP, Sierra A, Schwab JM, Henke-Fahle S and Mueller BK (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 22, 319-330 https://doi.org/10.1016/S1044-7431(02)00035-0
  47. Zhong J, Lan C, Zhang C et al (2019) Chondroitin sulfate proteoglycan represses neural stem/progenitor cells migration via PTPsigma/alpha-actinin4 signaling pathway. J Cell Biochem 120, 11008-11021. https://doi.org/10.1002/jcb.28379
  48. Rachmilewitz J and Tykocinski ML (1998) Differential effects of chondroitin sulfates A and B on monocyte and B-cell activation: evidence for B-cell activation via a CD44-dependent pathway. Blood 92, 223-229 https://doi.org/10.1182/blood.V92.1.223.413k15_223_229
  49. Zhang W, Sun F, Niu H, Wang Q and Duan J (2015) Mechanistic insights into cellular immunity of chondroitin sulfate A and its zwitterionic N-deacetylated derivatives. Carbohydr Polym 123, 331-338 https://doi.org/10.1016/j.carbpol.2015.01.059
  50. Yang R, Yan Z, Chen F, Hansson GK and Kiessling R (2002) Hyaluronic acid and chondroitin sulphate A rapidly promote differentiation of immature DC with upregulation of costimulatory and antigen-presenting molecules, and enhancement of NF-kappaB and protein kinase activity. Scand J Immunol 55, 2-13 https://doi.org/10.1046/j.0300-9475.2001.01033.x
  51. Tan GK and Tabata Y (2014) Chondroitin-6-sulfate attenuates inflammatory responses in murine macrophages via suppression of NF-kappaB nuclear translocation. Acta Biomater 10, 2684-2692 https://doi.org/10.1016/j.actbio.2014.02.025
  52. Rolls A, Cahalon L, Bakalash S, Avidan H, Lider O and Schwartz M (2006) A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration. FASEB J 20, 547-549 https://doi.org/10.1096/fj.05-4540fje
  53. Miyamoto K, Tanaka N, Moriguchi K et al (2014) Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis. Glycobiology 24, 469-475 https://doi.org/10.1093/glycob/cwu014
  54. Heindryckx F and Li JP (2018) Role of proteoglycans in neuro-inflammation and central nervous system fibrosis. Matrix Biol 68-69, 589-601 https://doi.org/10.1016/j.matbio.2018.01.015
  55. Castillo GM, Cummings JA, Yang W et al (1998) Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan's enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes 47, 612-620 https://doi.org/10.2337/diabetes.47.4.612
  56. DeWitt DA, Silver J, Canning DR and Perry G (1993) Chondroitin sulfate proteoglycans are associated with the lesions of Alzheimer's disease. Exp Neurol 121, 149-152 https://doi.org/10.1006/exnr.1993.1081
  57. Ajmo JM, Bailey LA, Howell MD et al (2010) Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw. J Neurochem 113, 784-795 https://doi.org/10.1111/j.1471-4159.2010.06647.x
  58. Howell MD, Bailey LA, Cozart MA, Gannon BM and Gottschall PE (2015) Hippocampal administration of chondroitinase ABC increases plaque-adjacent synaptic marker and diminishes amyloid burden in aged APPswe/PS1dE9 mice. Acta Neuropathol Commun 3, 54 https://doi.org/10.1186/s40478-015-0233-z
  59. Sobel RA and Ahmed AS (2001) White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J Neuropathol Exp Neurol 60, 1198-1207 https://doi.org/10.1093/jnen/60.12.1198
  60. Kamermans A, Planting KE, Jalink K, van Horssen J and de Vries HE (2019) Reactive astrocytes in multiple sclerosis impair neuronal outgrowth through TRPM7-mediated chondroitin sulfate proteoglycan production. Glia 67, 68-77 https://doi.org/10.1002/glia.23526
  61. Stephenson EL, Mishra MK, Moussienko D et al (2018) Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain 141, 1094-1110 https://doi.org/10.1093/brain/awy033
  62. Saigoh K, Yoshimura S, Izumikawa T et al (2016) Chondroitin sulfate beta-1,4-N-acetylgalactosaminyltransferase-1 (ChGn-1) polymorphism: Association with progression of multiple sclerosis. Neurosci Res 108, 55-59 https://doi.org/10.1016/j.neures.2016.01.002
  63. Carter LM, Starkey ML, Akrimi SF, Davies M, McMahon SB and Bradbury EJ (2008) The yellow fluorescent protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying chondroitinase ABC-mediated repair after spinal cord injury. J Neurosci 28, 14107-14120 https://doi.org/10.1523/JNEUROSCI.2217-08.2008
  64. Nori S, Khazaei M, Ahuja CS et al (2018) Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury. Stem Cell Reports 11, 1433-1448 https://doi.org/10.1016/j.stemcr.2018.10.017
  65. Barritt AW, Davies M, Marchand F et al (2006) Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 26, 10856-10867 https://doi.org/10.1523/JNEUROSCI.2980-06.2006
  66. Didangelos A, Iberl M, Vinsland E, Bartus K and Bradbury EJ (2014) Regulation of IL-10 by chondroitinase ABC promotes a distinct immune response following spinal cord injury. J Neurosci 34, 16424-16432 https://doi.org/10.1523/JNEUROSCI.2927-14.2014
  67. Rolls A, Shechter R, London A et al (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5, e171 https://doi.org/10.1371/journal.pmed.0050171
  68. Lau LW, Keough MB, Haylock-Jacobs S et al (2012) Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol 72, 419-432 https://doi.org/10.1002/ana.23599
  69. Gaudet AD and Popovich PG (2014) Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol 258, 24-34 https://doi.org/10.1016/j.expneurol.2013.11.020
  70. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81, 1-5 https://doi.org/10.1189/jlb.0306164
  71. Kim S, Takahashi H, Lin WW et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102-106 https://doi.org/10.1038/nature07623
  72. Sokolove J and Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5, 77-94 https://doi.org/10.1177/1759720X12467868
  73. Weigel PH, Hascall VC and Tammi M (1997) Hyaluronan synthases. J Biol Chem 272, 13997-14000 https://doi.org/10.1074/jbc.272.22.13997
  74. Fowke TM, Karunasinghe RN, Bai JZ, Jordan S, Gunn AJ and Dean JM (2017) Hyaluronan synthesis by developing cortical neurons in vitro. Sci Rep 7, 44135 https://doi.org/10.1038/srep44135
  75. Austin JW, Gilchrist C and Fehlings MG (2012) High molecular weight hyaluronan reduces lipopolysaccharide mediated microglial activation. J Neurochem 122, 344-355 https://doi.org/10.1111/j.1471-4159.2012.07789.x
  76. Noble PW (2002) Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 21, 25-29 https://doi.org/10.1016/S0945-053X(01)00184-6
  77. Wang MJ, Kuo JS, Lee WW, Huang HY, Chen WF and Lin SZ (2006) Translational event mediates differential production of tumor necrosis factor-alpha in hyaluronan-stimulated microglia and macrophages. J Neurochem 97, 857-871 https://doi.org/10.1111/j.1471-4159.2006.03776.x
  78. Ventorp F, Barzilay R, Erhardt S et al (2016) The CD44 ligand hyaluronic acid is elevated in the cerebrospinal fluid of suicide attempters and is associated with increased blood-brain barrier permeability. J Affect Disord 193, 349-354 https://doi.org/10.1016/j.jad.2015.12.069
  79. Jakovcevski I, Miljkovic D, Schachner M and Andjus PR (2013) Tenascins and inflammation in disorders of the nervous system. Amino Acids 44, 1115-1127 https://doi.org/10.1007/s00726-012-1446-0
  80. Jones FS and Jones PL (2000) The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 218, 235-259 https://doi.org/10.1002/(SICI)1097-0177(200006)218:2<235::AID-DVDY2>3.0.CO;2-G
  81. Lochter A and Schachner M (1993) Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite growth in vitro. J Neurosci 13, 3986-4000 https://doi.org/10.1523/JNEUROSCI.13-09-03986.1993
  82. Husmann K, Faissner A and Schachner M (1992) Tenascin promotes cerebellar granule cell migration and neurite outgrowth by different domains in the fibronectin type III repeats. J Cell Biol 116, 1475-1486 https://doi.org/10.1083/jcb.116.6.1475
  83. Xiao ZC, Ragsdale DS, Malhotra JD et al (1999) Tenascin-R is a functional modulator of sodium channel beta subunits. J Biol Chem 274, 26511-26517 https://doi.org/10.1074/jbc.274.37.26511
  84. Laywell ED, Dorries U, Bartsch U, Faissner A, Schachner M and Steindler DA (1992) Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc Natl Acad Sci U S A 89, 2634-2638 https://doi.org/10.1073/pnas.89.7.2634
  85. Chiovaro F, Chiquet-Ehrismann R and Chiquet M (2015) Transcriptional regulation of tenascin genes. Cell Adh Migr 9, 34-47 https://doi.org/10.1080/19336918.2015.1008333
  86. Goh FG, Piccinini AM, Krausgruber T, Udalova IA and Midwood KS (2010) Transcriptional regulation of the endogenous danger signal tenascin-C: a novel autocrine loop in inflammation. J Immunol 184, 2655-2662 https://doi.org/10.4049/jimmunol.0903359
  87. Midwood K, Sacre S, Piccinini AM et al (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15, 774-780 https://doi.org/10.1038/nm.1987
  88. Claycomb KI, Winokur PN, Johnson KM et al (2014) Aberrant production of tenascin-C in globoid cell leukodystrophy alters psychosine-induced microglial functions. J Neuropathol Exp Neurol 73, 964-974 https://doi.org/10.1097/NEN.0000000000000117
  89. Momcilovic M, Stamenkovic V, Jovanovic M et al (2017) Tenascin-C deficiency protects mice from experimental autoimmune encephalomyelitis. J Neuroimmunol 302, 1-6 https://doi.org/10.1016/j.jneuroim.2016.12.001
  90. Yokosaki Y, Palmer EL, Prieto AL et al (1994) The integrin alpha 9 beta 1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin. J Biol Chem 269, 26691-26696 https://doi.org/10.1016/S0021-9258(18)47074-3
  91. Ito K, Morimoto J, Kihara A et al (2014) Integrin alpha9 on lymphatic endothelial cells regulates lymphocyte egress. Proc Natl Acad Sci U S A 111, 3080-3085 https://doi.org/10.1073/pnas.1311022111