DOI QR코드

DOI QR Code

N-Adamantyl-4-methylthiazol-2-amine suppresses glutamate-induced autophagic cell death via PI3K/Akt/mTOR signaling pathways in cortical neurons

  • Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University) ;
  • Han, A Reum (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Choi, Hye-Rim (Department of Biomedical Laboratory Science, Konyang University) ;
  • Hwang, Kyouk (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Kim, Eun-A (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Choi, Soo Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
  • Received : 2020.03.20
  • Accepted : 2020.04.20
  • Published : 2020.10.31

Abstract

We recently reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) attenuates glutamate-induced oxidative stress and inflammation in the brain. In this study, we investigated KHG 26693 as a therapeutic agent against glutamate-induced autophagic death of cortical neurons. Treatment with KHG26693 alone did not affect the viability of cultured cortical neurons but was protective against glutamate-induced cytotoxicity in a concentration-dependent manner. KHG26693 attenuated the glutamate-induced increase in protein levels of LC3, beclin-1, and p62. Whereas glutamate decreased the phosphorylation of PI3K, Akt, and mTOR, these levels were restored by treatment with KHG26693. These results suggest that KHG26693 inhibits glutamate-induced autophagy by regulating PI3K/Akt/mTOR signaling. Finally, KHG26693 treatment also attenuated glutamate-induced increases in reactive oxygen species, glutathione, glutathione peroxidase, and superoxide dismutase levels in cortical neurons, indicating that KHG26693 also protects cortical neurons against glutamate-induced autophagy by regulating the reactive oxygen species scavenging system.

Keywords

References

  1. Blandini F, Greenamyre JT and Nappi G (1996) The role of glutamate in the pathophysiology of Parkinson's disease. Funct Neurol 11, 3-15
  2. Olney JW (2003) Excitotoxicity, apoptosis and neuropsychiatric disorders. Curr Opin Pharmacol 3, 101-109 https://doi.org/10.1016/S1471489202000024
  3. Kalia LV, Kalia SK and Salter MW (2008) NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 7, 742-755 https://doi.org/10.1016/S1474-4422(08)70165-0
  4. Patel M, Day BJ, Crapo JD et al (1996) Requirement for superoxide in excitotoxic cell death. Neuron 16, 345-355 https://doi.org/10.1016/S0896-6273(00)80052-5
  5. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97, 1634-1658 https://doi.org/10.1111/j.1471-4159.2006.03907.x
  6. Margaill I, Plotkine M and Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 39, 429-443 https://doi.org/10.1016/j.freeradbiomed.2005.05.003
  7. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96, 67-202 https://doi.org/10.1016/S0163-7258(02)00298-X
  8. Bigford GE, Alonso OF, Dietrich D et al (2009) A novel protein complex in membrane rafts linking the NR2B glutamate receptor and autophagy is disrupted following traumatic brain injury. J Neurotrauma 26, 703-720 https://doi.org/10.1089/neu.2008.0783
  9. Kulbe JR, Levy JMM, Coultrap SJ et al (2016) Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res 1542, 12-19 https://doi.org/10.1016/j.brainres.2013.10.032
  10. Wang Y, Li YB, Yin JJ et al (2013) Autophagy regulates inflammation following oxidative injury in diabetes. Autophagy 9, 272-277 https://doi.org/10.4161/auto.23628
  11. Kim EA, Han AR, Choi J et al (2014) Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells. Int Immunopharmacol 22, 73-83 https://doi.org/10.1016/j.intimp.2014.06.022
  12. Chen ZF, Li YB, Han JY et al (2011) The double-edged effect of autophagy in pancreatic beta cells and diabetes. Autophagy 7, 12-16 https://doi.org/10.4161/auto.7.1.13607
  13. Kim H, Choi J, Ryu J et al (2009). Activation of autophagy during glutamate-induced HT22 cell death. Biochem Biophys Res Commun 388, 339-344 https://doi.org/10.1016/j.bbrc.2009.08.007
  14. Ma YM, Ibeanu G, Wang LY et al (2017) Selenium suppresses glutamate-induced cell death and prevents mitochondrial morphological dynamic alterations in hippocampal HT22 neuronal cells. BMC Neurosci 18, 15 https://doi.org/10.1186/s12868-017-0337-4
  15. Kumari S, Mehta SL, Li PA (2012) Glutamate Induces Mitochondrial Dynamic Imbalance and Autophagy Activation: Preventive Effects of Selenium. PLoS One 7, e39382 https://doi.org/10.1371/journal.pone.0039382
  16. Yang SJ, Lee WJ, Kim EA et al (2014) Effects of Nadamantyl-4-methylthiazol-2-amine on hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. Eur J Pharmacol 736, 26-34 https://doi.org/10.1016/j.ejphar.2014.04.031
  17. Cho CH, Kim EA, Kim J et al (2016) N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid ${\beta}$-induced neuronal oxidative damage in cortical neurons. Free Rad Res 50, 678-690 https://doi.org/10.3109/10715762.2016.1167277
  18. Cho CH, Kim J, Ahn JY et al (2015) N-Adamantyl-4-methylthiazol-2-amine suppresses lipopolysaccharide-induced brain inflammation by regulating $NF-{\kappa}B$ signaling in mice. J Neuroimmunol 289, 98-104 https://doi.org/10.1016/j.jneuroim.2015.10.016
  19. Yang SJ, Kim EA, Chang MJ et al (2017) N-Adamantyl-4-methylthiazol-2-amine attenuates glutamate-induced oxidative stress and inflammation in the brain. Neurotox Res 32, 107-120 https://doi.org/10.1007/s12640-017-9717-x
  20. Xing S, Zhang Y, Li J et al (2012). Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. Autophagy 8, 63-76 https://doi.org/10.4161/auto.8.1.18217
  21. Yin WY, Ye Q, Huang HJ et al (2016) Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy. Mol Cell Biochem 419, 53-64 https://doi.org/10.1007/s11010-016-2749-3
  22. Ichimura Y, Kominami E, Tanaka K et al (2008) Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy 4, 1063-1066 https://doi.org/10.4161/auto.6826
  23. Yang Z and Klionsky DJ (2012) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22, 124-131 https://doi.org/10.1016/j.ceb.2009.11.014
  24. Wang Y, Wang W, Li D et al (2014) IGF-1 alleviates NMDA-induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K-AKT-mTOR pathway. J Cell Physiol 229, 1618-1629 https://doi.org/10.1002/jcp.24607
  25. Wu YT, Tan HL, Huang Q et al (2009) Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5, 824-834 https://doi.org/10.4161/auto.9099
  26. Saiki S, Sasazawa Y, Imamichi Y et al (2011) Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 7, 176-187 https://doi.org/10.4161/auto.7.2.14074
  27. Peltier J, O'Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67, 1348-1361 https://doi.org/10.1002/dneu.20506
  28. Harris H and Rubinsztein DC (2012) Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8, 108-117 https://doi.org/10.1038/nrneurol.2011.200
  29. Qureshi GA, Baig S, Sarwar M et al (2004) Neurotoxicity, oxidative stress and cerebrovascular disorders. Neurotoxicol 25, 121-138 https://doi.org/10.1016/S0161-813X(03)00093-7
  30. Ma S, Liu H, Jiao H et al (2012) Neuroprotective effect of ginkgolide K on glutamate-induced cytotoxicity in PC 12 cells via inhibition of ROS generation and $Ca^{2+}$ influx. Neurotoxicol 33, 59-69 https://doi.org/10.1016/j.neuro.2011.11.003
  31. Nie BM, Jiang XY, Cai JX et al (2008) Panaxydol and panaxynol protect cultured cortical neurons against Abeta25-35-induced toxicity. Neuropharmacology 54, 845-853 https://doi.org/10.1016/j.neuropharm.2008.01.003
  32. Lombardi G, Varsaldi F, Miglio G et al (2002) Cabergoline prevents necrotic neuronal death in an in vitro model of oxidative stress. Eur J Pharmacol 457, 95-99 https://doi.org/10.1016/S0014-2999(02)02683-3
  33. Rattanajarasroj S and Unchern S (2010) Comparable attenuation of Abeta(25-35)-induced neurotoxicity by quercitrin and 17 beta-estradiol in cultured rat hippocampal neurons. Neurochem Res 35, 1196-1205 https://doi.org/10.1007/s11064-010-0175-6
  34. Han A, Yang JW, Na JH et al (2019) Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxiainduced ${\beta}$-amyloid production in SH-SY5Y cells. BMB Rep 52, 439-444 https://doi.org/10.5483/BMBRep.2019.52.7.231