DOI QR코드

DOI QR Code

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Received : 2020.04.17
  • Accepted : 2020.08.03
  • Published : 2020.11.01

Abstract

Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.

Keywords

References

  1. Khodadadi, A., Faghih-Mirzaei, E., Karimi-Maleh, H., Abbaspourrad, A., Agarwal, S. and Gupta, V. K., "A New Epirubicin Biosensor Based on Amplifying DNA Interactions with Polypyrrole and Nitrogen-doped Reduced Graphene: Experimental and Docking Theoretical Investigations," Sens. Actuators B Chem., 284, 568-574(2019). https://doi.org/10.1016/j.snb.2018.12.164
  2. Mollarasouli, F., Asadpour-Zeynali, K., Campuzano, S., Yanez-Sedeno, P. and Pingarron, J. M., "Non-enzymatic Hydrogen Peroxide Sensor Based on Graphene Quantum Dots-chitosan/methylene Blue Hybrid Nanostructures," Electrochim. Acta, 246, 303-314(2017). https://doi.org/10.1016/j.electacta.2017.06.003
  3. Asadian, E., Ghalkhani, M., and Shahrokhian, S., "Electrochemical Sensing Based on Carbon Nanoparticles: A Review," Sens. Actuators B Chem., 293, 183-209(2019). https://doi.org/10.1016/j.snb.2019.04.075
  4. Campuzano, S., Yanez-Sedeno, P. and Pingarron, J. M., "Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing," Nanomaterials, 9, 634(2019). https://doi.org/10.3390/nano9040634
  5. Cayuela, A., Soriano, M. L., Carrillo-Carrion, C., Valcarcel, M., "Semiconductor and Carbon-based Fluorescent Nanodots: the Need for Consistency," Chem. Commun., 52, 1311-1326(2016). https://doi.org/10.1039/C5CC07754K
  6. Sciortino, A., Cannizzo, A. and Messina, F., "Carbon Nanodots: A Review-From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response," C, 4, 67(2018). https://doi.org/10.3390/c4040067
  7. Zheng, X. T., Ananthanarayanan, A., Luo, K. Q. and Chen, P., "Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications," Small, 11, 1620-1636(2015). https://doi.org/10.1002/smll.201402648
  8. Le, T. H., Lee, D. H., Kim, J. H., Park, S. J., "Synthesis of Enhanced Fluorescent Graphene Quantum Dots for Catecholamine Neurotransmitter Sensing," Korean J. Chem. Eng., 37, 1000-1007(2020). https://doi.org/10.1007/s11814-020-0507-4
  9. Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., et al., "Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments," J. Am. Chem. Soc., 126, 12736-12737(2004). https://doi.org/10.1021/ja040082h
  10. Xie, R., Wang, Z., Zhou, W., Liu, Y., Fan, L. and Li, Y., "Graphene Quantum Dots as Smart Probes for Biosensing," Anal. Methods, 8, 4001-4016(2016). https://doi.org/10.1039/C6AY00289G
  11. Pan, D., Zhang, J., Li, Z. and Wu, M., "Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots," Adv. Mater., 22, 734-738(2010). https://doi.org/10.1002/adma.200902825
  12. Li, H., He, X., Kang, Z., Huang, H., Liu, Y. and Liu, J., "Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design," Angew. Chem. Int. Ed, 49, 4430-4434(2010). https://doi.org/10.1002/anie.200906154
  13. Peng, J., Gao, W., Gupta, B. K., Liu, Z., Romero-Aburto, R. and Ge, L., "Graphene Quantum Dots Derived from Carbon Fibers," Nano Lett., 12, 844-849(2012). https://doi.org/10.1021/nl2038979
  14. Zhuo, S., Shao, M. and Lee, S.-T., "Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis," ACS Nano, 6, 1059-1064(2012). https://doi.org/10.1021/nn2040395
  15. Li, L.-L., Ji, J., Fei, R., Wang, C.-Z., Lu, Q. and Zhang, J.-R., "A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots," Adv. Funct. Mater., 22, 2971-2979(2012). https://doi.org/10.1002/adfm.201200166
  16. Liu, F., Jang, M.-H., Ha, H. D., Kim, J.-H., Cho, Y.-H., Seo, T. S., "Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence," Adv. Mater., 25, 3657-3662(2013). https://doi.org/10.1002/adma.201300233
  17. Dong, Y., Shao, J., Chen, C., Li, H., Wang, R. and Chi, Y., "Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid," Carbon, 50, 4738-4743(2012). https://doi.org/10.1016/j.carbon.2012.06.002
  18. Tao, S., Song, Y., Zhu, S., Shao, J., Yang, B., "A New Type of Polymer Carbon Dots with High Quantum Yield: From Synthesis to Investigation on Fluorescence Mechanism," Polymer, 116, 472-478(2017). https://doi.org/10.1016/j.polymer.2017.02.039
  19. Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X. and Luo, Y., "Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions," Adv. Mater., 24, 2037-2041(2012). https://doi.org/10.1002/adma.201200164
  20. Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., "Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots," ACS Nano, 6, 5102-5110(2012). https://doi.org/10.1021/nn300760g
  21. Sagbas, S. and Sahiner, N., in A. Khan, M. Jawaid, Inamuddin, A. M. Asiri (Eds.), Nanocarbon and its Composites, Woodhead Publishing, 651-676(2019).
  22. De, B. and Karak, N., "Recent Progress in Carbon Dot-metal Based Nanohybrids for Photochemical and Electrochemical Applications," J. Mater. Chem. A, 5, 1826-1859(2017). https://doi.org/10.1039/C6TA10220D
  23. Tian, P., Tang, L., Teng, K. S. and Lau, S. P., "Graphene Quantum Dots from Chemistry to Applications," Mater. Today Chem., 10, 221-258(2018). https://doi.org/10.1016/j.mtchem.2018.09.007
  24. Han, M., Zhu, S., Lu, S., Song, Y., Feng, T. and Tao, S., "Recent Progress on the Photocatalysis of Carbon Dots: Classification, Mechanism and Applications," Nano Today, 19, 201-218(2018). https://doi.org/10.1016/j.nantod.2018.02.008
  25. Guo, X., Zhang, H., Sun, H., Tade, M. O. and Wang, S., "Green Synthesis of Carbon Quantum Dots for Sensitized Solar Cells," ChemPhotoChem, 1, 116-119(2017). https://doi.org/10.1002/cptc.201600038
  26. Hu, C., Li, M., Qiu, J. and Sun, Y.-P., "Design and Fabrication of Carbon Dots for Energy Conversion and Storage," Chem. Soc. Rev., 48, 2315-2337(2019). https://doi.org/10.1039/C8CS00750K
  27. Kasouni, A., Chatzimitakos, T. and Stalikas, C., "Bioimaging Applications of Carbon Nanodots: A Review," C, 5, 19(2019).
  28. Li, Y., Zhong, Y., Zhang, Y., Weng, W. and Li, S., "Carbon Quantum Dots/octahedral $Cu_2O$ Nanocomposites for Non-enzymatic Glucose and Hydrogen Peroxide Amperometric Sensor," Sens. Actuators B Chem., 206, 735-743(2015). https://doi.org/10.1016/j.snb.2014.09.016
  29. Cho, M.-J. and Park, S.-Y., "Carbon-dot-based Ratiometric Fluorescence Glucose Biosensor," Sens. Actuators B Chem., 282, 719-729(2019). https://doi.org/10.1016/j.snb.2018.11.055
  30. Kim, J., Park, J., Kim, H., Singha, K. and Kim, W. J., "Transfection and Intracellular Trafficking Properties of Carbon Dot-gold Nanoparticle Molecular Assembly Conjugated with PEI-pDNA," Biomaterials, 34, 7168-7180(2013). https://doi.org/10.1016/j.biomaterials.2013.05.072
  31. Sun, H., Wu, L., Wei, W. and Qu, X., "Recent Advances in Graphene Quantum Dots for Sensing," Mater. Today, 16, 433-442 (2013). https://doi.org/10.1016/j.mattod.2013.10.020
  32. Tuteja, S. K., Chen, R., Kukkar, M., Song, C. K., Mutreja, R. and Singh, S., "A Label-free Electrochemical Immunosensor for the Detection of Cardiac Marker Using Graphene Quantum Dots (GQDs)," Biosens. Bioelectron., 86, 548-556(2016). https://doi.org/10.1016/j.bios.2016.07.052
  33. Xu, G., Han, J., Ding, B., Nie, P., Pan, J., Dou, H., "Biomass-derived Porous Carbon Materials with Sulfur and Nitrogen Dual-doping for Energy Storage," Green Chem., 17, 1668-1674 (2015). https://doi.org/10.1039/C4GC02185A
  34. Guo, Q., Zhang, M., Zhou, G., Zhu, L., Feng, Y. and Wang, H., "Highly Sensitive Simultaneous Electrochemical Detection of Hydroquinone and Catechol with Three-dimensional N-doping Carbon Nanotube Film Electrode," J. ElectroAnal. Chem., 760, 15-23(2016). https://doi.org/10.1016/j.jelechem.2015.11.034
  35. Zhang, L., Han, Y., Zhu, J., Zhai, Y. and Dong, S., "Simple and Sensitive Fluorescent and Electrochemical Trinitrotoluene Sensors Based on Aqueous Carbon Dots," Anal. Chem., 87, 2033-2036(2015). https://doi.org/10.1021/ac5043686
  36. Jiang, Y., Wang, B., Meng, F., Cheng, Y. and Zhu, C., "Microwave-assisted Preparation of N-doped Carbon Dots as a Biosensor for Electrochemical Dopamine Detection," J. Colloid Interface Sci., 452, 199-202(2015). https://doi.org/10.1016/j.jcis.2015.04.016
  37. Fu, L., Wang, A., Lai, G., Lin, C.-T., Yu, J. and Yu, A., "A Glassy Carbon Electrode Modified with N-doped Carbon Dots for Improved Detection of Hydrogen Peroxide and Paracetamol," Microchim. Acta, 185, 87(2018). https://doi.org/10.1007/s00604-017-2646-9
  38. Liu, L., Anwar, S., Ding, H., Xu, M., Yin, Q. and Xiao, Y., "Electrochemical Sensor Based on F,N-doped Carbon Dots Decorated Laccase for Detection of Catechol," J. ElectroAnal. Chem., 840, 84-92(2019). https://doi.org/10.1016/j.jelechem.2019.03.071
  39. Zhou, M., Guo, J., Guo, L.-P. and Bai, J., "Electrochemical Sensing Platform Based on the Highly Ordered Mesoporous Carbon-Fullerene System," Anal. Chem., 80, 4642-4650(2008). https://doi.org/10.1021/ac702496k
  40. Banks, C. E., Davies, T. J. Wildgoose, G. G. and Compton, R. G., "Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge-plane Sites and Tube Ends are the Reactive Sites," Chem. Commun., 37(7), 829-841(2005).
  41. Hu, S., Huang, Q., Lin, Y., Wei, C., Zhang, H. and Zhang, W., "Reduced Graphene Oxide-carbon Dots Composite as An Enhanced Material for Electrochemical Determination of Dopamine," Electrochim. Acta, 130, 805-809(2014). https://doi.org/10.1016/j.electacta.2014.02.150
  42. Ngo, Y.-L.T. and Hur, S. H., "Low-temperature $NO_2$ Gas Sensor Fabricated with NiO and Reduced Graphene Oxide Hybrid Structure," Mater. Res. Bull., 84, 168-176(2016). https://doi.org/10.1016/j.materresbull.2016.08.004
  43. Bai, J., Sun, C. and Jiang, X., "Carbon Dots-decorated Multiwalled Carbon Nanotubes Nanocomposites as a High-performance Electrochemical Sensor for Detection of $H_2O_2$ in Living Cells," Anal. Bioanal.Chem., 408, 4705-4714(2016). https://doi.org/10.1007/s00216-016-9554-4
  44. Zhang, W., Zheng, J., Lin, Z., Zhong, L., Shi, J. and Wei, C., "Highly Sensitive Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol Based on Carbon Dot/reduced Graphene Oxide Composite Modified Electrodes," Anal. Methods, 7, 6089-6094(2015). https://doi.org/10.1039/C5AY00848D
  45. Wei, C., Huang, Q., Hu, S., Zhang, H., Zhang, W. and Wang, Z., "Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nafion/multi-walled Nanotubes/carbon Dots/multi-walled Nanotubes Modified Glassy Electrode," Electrochim. Acta, 149, 237-244(2014). https://doi.org/10.1016/j.electacta.2014.10.051
  46. Huang, Q., Lin, X., Tong, L. and Tong, Q.-X., "Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells," ACS Sustain. Chem. Eng., 8, 1644-1650(2020). https://doi.org/10.1021/acssuschemeng.9b06623
  47. Li, L., Liu, D., Wang, K., Mao, H. and You, T., "Quantitative Detection of Nitrite with N-doped Graphene Quantum Dots Decorated N-doped Carbon Carbon, Nanofibers Composite-based Electrochemical Sensor," Sens. Actuators B Chem., 252, 17-23(2017). https://doi.org/10.1016/j.snb.2017.05.155
  48. Roushani, M. and Abdi, Z., "Novel Electrochemical Sensor Based on Graphene Quantum Dots/riboflavin Nanocomposite for the Detection of Persulfate," Sens. Actuators B Chem., 201, 503-510 (2014). https://doi.org/10.1016/j.snb.2014.05.054
  49. Roushani, M. and Sarabaegi, M., "Novel Electrochemical Sensor Based on Carbon Nanodots/chitosan Nanocomposite for the Detection of Tryptophan," J. Iran. Chem. Soc., 12, 1875-1882(2015). https://doi.org/10.1007/s13738-015-0662-4
  50. Yu, L., Yue, X., Yang, R., Jing, S. and Qu, L., "A Sensitive and Low Toxicity Electrochemical Sensor for 2,4-dichlorophenol Based on the Nanocomposite of Carbon Dots, Hexadecyltrimethyl Ammonium Bromide and Chitosan," Sens. Actuators B Chem., 224, 241-247(2016). https://doi.org/10.1016/j.snb.2015.10.035
  51. Ji, H., Zhou, F., Gu, J., Shu, C., Xi, K. and Jia, X., "Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination," Sensors, 16, 630(2016). https://doi.org/10.3390/s16050630
  52. Zheng, W., Wu, H., Jiang, Y., Xu, J., Li, X. and Zhang, W., "A Molecularly-imprinted-electrochemical-sensor Modified with Nanocarbon-dots with High Sensitivity and Selectivity for Rapid Determination of Glucose," Anal. Biochem., 555, 42-49(2018). https://doi.org/10.1016/j.ab.2018.06.004
  53. Hartley, A. M. and Wilson, G. S., "Unusual Adsorption Effects in the Electrochemical Reduction of Flavin Mononucleotide at Mercury Electrodes," Anal. Chem., 38, 681-687(1966). https://doi.org/10.1021/ac60238a004
  54. Roushani, M., Karami, E., Salimi, A. and Sahraei, R., "Amperometric Detection of Hydrogen Peroxide at Nano-ruthenium Oxide/riboflavin Nanocomposite-modified Glassy Carbon Electrodes," Electrochim. Acta, 113, 134-140(2013). https://doi.org/10.1016/j.electacta.2013.09.069
  55. Chen, L. and Gorski, W., "Bioinorganic Composites for Enzyme Electrodes," Anal. Chem., 73, 2862-2868(2001). https://doi.org/10.1021/ac010009z
  56. Wang, Z., Zhou, X., Zhang, J., Boey, F. and Zhang, H., "Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase," J. Phys. Chem. C, 113, 14071-14075(2009). https://doi.org/10.1021/jp906348x
  57. Tan, F., Cong, L., Li, X., Zhao, Q., Zhao, H. and Quan, X., "An Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole/graphene Quantum Dots Composite for Detection of Bisphenol A in Water Samples," Sens. Actuators B Chem., 233, 599-606(2016). https://doi.org/10.1016/j.snb.2016.04.146
  58. Saha, K., Agasti, S. S., Kim, C., Li, X. and Rotello, V. M., "Gold Nanoparticles in Chemical and Biological Sensing," Chem. Rev., 112, 2739-2779(2012). https://doi.org/10.1021/cr2001178
  59. Li, J., Qu, J., Yang, R., Qu, L. and Harrington, P. de B., "A Sensitive and Selective Electrochemical Sensor Based on Graphene Quantum Dot/Gold Nanoparticle Nanocomposite Modified Electrode for the Determination of Quercetin in Biological Samples," Electroanalysis, 28, 1322-1330(2016). https://doi.org/10.1002/elan.201500490
  60. Tang, J., Huang, R., Zheng, S., Jiang, S., Yu, H., Li, Z., "A Sensitive and Selective Electrochemical Sensor Based on Graphene Quantum Dots/gold Nanoparticles Nanocomposite Modified Electrode for the Determination of Luteolin in Peanut Hulls," Microchem. J., 145, 899-907(2019). https://doi.org/10.1016/j.microc.2018.12.006
  61. Zhuang, Z., Lin, H., Zhang, X., Qiu, F. and Yang, H., "A Glassy Carbon Electrode Modified with Carbon Dots and Gold Nanoparticles for Enhanced Electrocatalytic Oxidation and Detection of Nitrite," Microchim. Acta, 183, 2807-2814(2016). https://doi.org/10.1007/s00604-016-1931-3
  62. Zhang, S., Li, R., Liu, X., Yang, L., Lu, Q. and Liu, M., "A Novel Multiple Signal Amplifying Immunosensor Based on the Strategy of in Situ-produced Electroactive Substance by ALP and Carbon-based Ag-Au Bimetallic as the Catalyst and Signal Enhancer," Biosens. Bioelectron., 92, 457-464(2017). https://doi.org/10.1016/j.bios.2016.10.080
  63. Cui, M., Huang, J., Wang, Y., Wu, Y. and Luo, X., "Molecularly Imprinted Electrochemical Sensor for Propyl Gallate Based on PtAu Bimetallic Nanoparticles Modified Graphene-carbon Nanotube Composites," Biosens. Bioelectron., 68, 563-569(2015). https://doi.org/10.1016/j.bios.2015.01.029
  64. Shervedani, R. K., Karevan, M. and Amini, A., "Prickly Nickel Nanowires Grown on Cu Substrate as a Supersensitive Enzymefree Electrochemical Glucose Sensor," Sens. Actuators B Chem., 204, 783-790(2014). https://doi.org/10.1016/j.snb.2014.08.033
  65. Atar, N., Yola, M. L. and Eren, T., "Sensitive Determination of Citrinin Based on Molecular Imprinted Electrochemical Sensor," Appl. Surf. Sci., 362, 315-322(2016). https://doi.org/10.1016/j.apsusc.2015.11.222
  66. Rao, H., Zhao, X., Liu, X., Zhong, J., Zhang, Z. and Zou, P., "A Novel Molecularly Imprinted Electrochemical Sensor Based on Graphene Quantum Dots Coated on Hollow Nickel Nanospheres with High Sensitivity and Selectivity for the Rapid Determination of Bisphenol S," Biosens. Bioelectron., 100, 341-347(2018). https://doi.org/10.1016/j.bios.2017.09.016
  67. Huang, Q., Lin, X., Zhu, J.-J. and Tong, Q.-X., "Pd-Au@carbon Dots Nanocomposite: Facile Synthesis and Application as An Ultrasensitive Electrochemical Biosensor for Determination of Colitoxin DNA in Human Serum," Biosens. Bioelectron., 94, 507-512(2017). https://doi.org/10.1016/j.bios.2017.03.048
  68. Zhou, Q., Lin, Y., Lin, Y., Wei, Q., Chen, G. and Tang, D., "Highly Sensitive Electrochemical Sensing Platform for Lead Ion Based on Synergetic Catalysis of DNAzyme and Au-Pd Porous Bimetallic Nanostructures," Biosens. Bioelectron., 78, 236-243(2016). https://doi.org/10.1016/j.bios.2015.11.055
  69. He, Q., Tian, Y., Wu, Y., Liu, J., Li, G. and Deng, P., "Electrochemical Sensor for Rapid and Sensitive Detection of Tryptophan by a Cu(2)O Nanoparticles-Coated Reduced Graphene Oxide Nanocomposite," Biomolecules, 9, 176(2019). https://doi.org/10.3390/biom9050176
  70. Hasanzadeh, M., Karimzadeh, A., Shadjou, N., Mokhtarzadeh, A., Bageri, L., and Sadeghi, S., "Graphene Quantum Dots Decorated with Magnetic Nanoparticles: Synthesis, Electrodeposition, Characterization and Application as An Electrochemical Sensor Towards Determination of Some Amino Acids at Physiological pH," Mater. Sci. Eng. C, 68, 814-830(2016). https://doi.org/10.1016/j.msec.2016.07.026
  71. Abbas, M. W., Soomro, R. A., Kalwar, N. H., Zahoor, M., Avci, A. and Pehlivan, E., "Carbon Quantum Dot Coated $Fe_3O_4$ Hybrid Composites for Sensitive Electrochemical Detection of Uric Acid," Microchem. J., 146, 517-524(2019). https://doi.org/10.1016/j.microc.2019.01.034
  72. Shiri, S., Pajouheshpoor, N., Khoshsafar, H., Amidi, S. and Bagheri, H., "An Electrochemical Sensor for the Simultaneous Determination of Rifampicin and Isoniazid Using a C-dots@$CuFe_2O_4$ Nanocomposite Modified Carbon Paste Electrode," New J. Chem., 41, 15564-15573(2017). https://doi.org/10.1039/C7NJ03029K
  73. Mallakpour, S. and Khadem, E., in V. K. Thakur, M. K. Thakur, R. K. Gupta (Eds.), Hybrid Polymer Composite Materials, Woodhead Publishing, 235-261(2017).
  74. Shan, D., Cosnier, S., and Mousty, C., "Layered Double Hydroxides: An Attractive Material for Electrochemical Biosensor Design," Anal. Chem., 75, 3872-3879(2003). https://doi.org/10.1021/ac030030v
  75. Wang, Y., Wang, Z., Rui, Y. and Li, M., "Horseradish Peroxidase Immobilization on Carbon Carbon, Nanodots/CoFe Layered Double Hydroxides: Direct Electrochemistry and Hydrogen Peroxide Sensing," Biosens. Bioelectron., 64, 57-62(2015). https://doi.org/10.1016/j.bios.2014.08.054
  76. Samuei, S., Fakkar, J., Rezvani, Z., Shomali, A. and Habibi, B., "Synthesis and Characterization of Graphene Quantum Dots/CoNiAl-layered Double-hydroxide Nanocomposite: Application as a Glucose Sensor," Anal. Biochem., 521, 31-39(2017). https://doi.org/10.1016/j.ab.2017.01.005
  77. Jiang, Y., Li, Y., Li, Y. and Li, S., "A Sensitive Enzyme-free Hydrogen Peroxide Sensor Based on a Chitosan-graphene Quantum Dot/silver Nanocube Nanocomposite Modified Electrode," Anal. Methods, 8, 2448-2455(2016). https://doi.org/10.1039/C5AY02976G
  78. Xi, J., Xie, C., Zhang, Y., Wang, L., Xiao, J. and Duan, X., "Pd Nanoparticles Decorated N-Doped Graphene Quantum Dots@NDoped Carbon Hollow Nanospheres with High Electrochemical Sensing Performance in Cancer Detection," ACS Appl. Mater. Interfaces, 8, 22563-22573(2016). https://doi.org/10.1021/acsami.6b05561
  79. Guo, H., Jin, H., Gui, R., Wang, Z., Xia, J. and Zhang, F., "Electrode Position One-step Preparation of Silver Nanoparticles/carbon Dots/reduced Graphene Oxide Ternary Dendritic Nanocomposites for Sensitive Detection of Doxorubicin," Sens. Actuators B Chem., 253, 50-57(2017). https://doi.org/10.1016/j.snb.2017.06.095
  80. Bhunia, P., Hwang, E., Min, M., Lee, J., Seo, S. and Some, S., "A Non-volatile Memory Device Consisting of Graphene Oxide Covalently Functionalized with Ionic Liquid," Chem. Commun., 48, 913-915(2012). https://doi.org/10.1039/C1CC16225J
  81. Chen, D., Zhuang, X., Zhai, J., Zheng, Y., Lu, H. and Chen, L., "Preparation of Highly Sensitive Pt Nanoparticles-carbon Quantum Dots/ionic Liquid Functionalized Graphene Oxide Nanocomposites and Application for $H_2O_2$ Detection," Sens. Actuators B Chem., 255, 1500-1506(2018). https://doi.org/10.1016/j.snb.2017.08.156
  82. Huang, Q., Zhang, H., Hu, S., Li, F., Weng, W. and Chen, J., "A Sensitive and Reliable Dopamine Biosensor was Developed Based on the Au@carbon Dots-chitosan Composite Film," Biosens. Bioelectron., 52, 277-280(2014). https://doi.org/10.1016/j.bios.2013.09.003
  83. Guo, W., Pi, F., Zhang, H., Sun, J., Zhang, Y. and Sun, X., "A Novel Molecularly Imprinted Electrochemical Sensor Modified with Carbon Dots, Chitosan, Gold Nanoparticles for the Determination of Patulin," Biosens. Bioelectron., 98, 299-304(2017). https://doi.org/10.1016/j.bios.2017.06.036
  84. Akyildirim, O., Kardas, F., Beytur, M., Yuksek, H., Atar, N. and Yola, M. L., "Palladium Nanoparticles Functionalized Graphene Quantum Dots with Molecularly Imprinted Polymer for Electrochemical Analysis of Citrinin," J. Mol. Liq., 243, 677-681(2017). https://doi.org/10.1016/j.molliq.2017.08.085
  85. Ponnaiah, S. K., Prakash, P., Vellaichamy, B., Paulmony, T. and Selvanathan, R., "Picomolar-level Electrochemical Detection of Thiocyanate in the Saliva Samples of Smokers and Non-smokers of Tobacco Using Carbon Dots Doped $Fe_3O_4$ Nanocomposite Embedded on g-$C_3N_4$ Nanosheets," Electrochim. Acta, 283, 914-921(2018). https://doi.org/10.1016/j.electacta.2018.07.012
  86. Cai, J., Sun, B., Gou, X., Gou, Y., Li, W. and Hu, F., "A Novel Way for Analysis of Calycosin via Polyaniline Functionalized Graphene Quantum Dots Fabricated Electrochemical Sensor," J. ElectroAnal. Chem., 816, 123-131(2018). https://doi.org/10.1016/j.jelechem.2018.03.035
  87. Hatamluyi, B., Es'haghi, Z., Modarres Zahed, F., Darroudi, M., "A Novel Electrochemical Sensor Based on GQDs-PANI/ZnONCs Modified Glassy Carbon Electrode for Simultaneous Determination of Irinotecan and 5-Fluorouracil in Biological Samples," Sens. Actuators B Chem., 286, 540-549(2019). https://doi.org/10.1016/j.snb.2019.02.017