DOI QR코드

DOI QR Code

Experimental and Modeling Studies for the Adsorption of Phenol from Water Using Natural and Modified Algerian Clay

  • Djemai, Ismahane (Laboratoire de Recherche en Hydraulique Appliquee, Departement d'Hydraulique, Universite de Batna 2) ;
  • Messaid, Belkacem (Laboratoire de Recherche en Hydraulique Appliquee, Departement d'Hydraulique, Universite de Batna 2)
  • Received : 2020.06.03
  • Accepted : 2020.07.02
  • Published : 2020.11.01

Abstract

The ability of natural and modified clay to adsorb phenol was studied. The clay samples were analyzed by different technical instruments, such as X-ray fluorescence (XRF), X-ray diffraction (XRD) and FT-IR spectroscopy. Surface area, pore volume and average pore diameter were also determined using B.E.T method. Up to 73 and 99% of phenol was successfully adsorbed by natural and activated clay, respectively, from the aqueous solution. The experiments carried out show that the time required to reach the equilibrium of phenol adsorption on all the samples is very close to 60 min. The amount of phenol adsorbed shows a declining trend with higher pH as well as with lower pH, with most extreme elimination of phenol at pH 4. The adsorption of phenol increases proportionally with the initial phenol concentration. The maximum adsorption capacity at 25 ℃ and pH 4 was 29.661 mg/g for modified clay (NaMt). However, the effect of temperature on phenol adsorption was not significant. The simple modification causes the formation of smaller pores in the solid particles, resulting in a higher surface area of NaMt. The equilibrium results in aqueous systems were well fitted by the Freundlich isotherm equation (R2 > 0.98). Kinetic studies showed that the adsorption process is best described by the pseudo-second-order kinetics (R2 > 0.99). The adsorption of phenol on natural and modified clay was spontaneous and exothermal.

Keywords

References

  1. Legube, B., Le traitement des eaux de surface pour la production d'eau Potable, Guide technique, Agence Loire, Bretagne, France(1996).
  2. Degremont, S. A., Memento technique de l'eau, 10th Edition Lavoisier, Rueil-Malmaison, in two vols(2004).
  3. Agency for toxic substances and disease registry (ATSDR), Toxicological profile for phenol, Atlanta, GA: U.S., Department of health and human services, Public health service(2008).
  4. Michalowicz, J. and Duda, W., Polish J. of Environ. Stud., 16(3), 347(2007).
  5. Knop, A. and Pilato, L. A., Phenolic resins: chemistry, applications and Performance, Springer Science & Business Media(2013).
  6. World Health Organization (WHO), Guidelines for Drinking Water Quality, Health Criteria and Supporting Information, World Health Organization, vol. 2, Geneva, Switzerland(1984).
  7. Dutta, N. N., Brothakur, S. and Baruah, R., Water Environ. Res., 70, 4(1998). https://doi.org/10.2175/106143098X126838
  8. Ghodbane, I., Nouri, L., Hamdaoui, O. and Chiha, M., J. Hazard. Mater., 152(1), 148(2008). https://doi.org/10.1016/j.jhazmat.2007.06.079
  9. Huang, F. C., Lee, J. F., Lee, C. K. and Chao, H. P., Coll. Surf. A, 239, 41(2004). https://doi.org/10.1016/j.colsurfa.2003.10.030
  10. Vimonses, V., Lei, S., Jin, B., Chowd, C. W. K. and Saint, C., Chem. Eng. J., 148, 354 (2009). https://doi.org/10.1016/j.cej.2008.09.009
  11. Ozcan, A., Oncu, E. M. and Ozcan, A. S., J. Colloid Interface Sci., 280, 44(2004). https://doi.org/10.1016/j.jcis.2004.07.035
  12. Naseem, R. and Tahir, S. S., Water Res., 35, 3982(2001). https://doi.org/10.1016/S0043-1354(01)00130-0
  13. Ozcan, A. S. and Ozcan, A., J. Colloid Interface Sci., 276, 39 (2004). https://doi.org/10.1016/j.jcis.2004.03.043
  14. Witthuhn, B., Klauth, P., Klumpp, E., Narres, H. D. and Martinius, H., Appl. Clay Sci., 28, 55(2005). https://doi.org/10.1016/j.clay.2004.01.003
  15. Gonen, Y. and Rytwo, G., J. Colloid Interface Sci., 299, 95(2006). https://doi.org/10.1016/j.jcis.2006.01.055
  16. Bhattacharyya, K. G. and Sen Gupta, S. J. Colloid Interface Sci., 310, 411(2007). https://doi.org/10.1016/j.jcis.2007.01.080
  17. Koyuncu, H., Appl. Clay Sci., 38, 279(2008). https://doi.org/10.1016/j.clay.2007.03.010
  18. Shu, Y., Li, L., Zhang, Q. and Wu, H., J. Hazard. Mater., 173, 47(2010). https://doi.org/10.1016/j.jhazmat.2009.08.043
  19. Christidis, G., Applied Clay Sci., 13, 79(1998). https://doi.org/10.1016/S0169-1317(98)00023-4
  20. Hassani, A. H., Seif, S., Javid, A. H. and Borghei, M., Int. J. Environ. Res., 2(3), 239(2008).
  21. Aghamohammadi, N., Hamidi, A. A., Hasnain, I. M., Zinatizadeh, A. A., Nasrollahzadeh Saravi, H. and Ghafari, Sh., Int. J. Environ. Res., 1, 96(2007).
  22. Banat, F. A., Al-Bashir, B., Al-Asheh, S. and Hayajneh, O., Environ. Pollut., 107, 391(2000). https://doi.org/10.1016/S0269-7491(99)00173-6
  23. Juang, R. S., Lin, S. H. and Tsao, K. H., J. Colloid Interface Sci., 254(2002).
  24. Ramos Vianna, M. M. G., Franco, J. H. R., Pinto, C. A., Valenzuela Diaz, F. R. and Buchler, P. M., Braz. J. Chem. Eng., 21(2), 239(2004). https://doi.org/10.1590/S0104-66322004000200013
  25. Djebbar, M., Djafri, F., Bouchekara, M. and Djafri, A., Applied Water Science, 2, 77(2012). https://doi.org/10.1007/s13201-012-0031-8
  26. Diaz-Nava, M. C., Olguin, M. T. and Solache-Rios, M., J. Incl. Phenom Macrocycl Chem., 74, 67(2012). https://doi.org/10.1007/s10847-011-0084-6
  27. Hank, D., Azi, Z., Ait Hocine, S., Chaalal, O., Hellal, A., J. Ind. Eng. Chem., 20, 2256(2014). https://doi.org/10.1016/j.jiec.2013.09.058
  28. Xu, Y., Khan, M. A., Wang, F., Xia, M. and Lei, W., Appl. Clay Sci., 162, 204(2018). https://doi.org/10.1016/j.clay.2018.06.023
  29. Ren, S., Deng, J., Meng, Z., Wang, T., Xie, T. and Xu, S., Powder Technol., 356, 284(2019). https://doi.org/10.1016/j.powtec.2019.08.024
  30. Ouallal, H., Dehmani, Y., Moussout, H., Messaoudi, L., Azrour, M., Heliyon, 5, e01616(2019). https://doi.org/10.1016/j.heliyon.2019.e01616
  31. Bouiahya, K., Es-saidi, I., El Bekkali, C., Laghzizil, A., Robert, D., Nunzi, J. M. and Saoiabi, A., Colloids Interface Sci. Commun., 31, 100188(2019). https://doi.org/10.1016/j.colcom.2019.100188
  32. Khalaf, H., Bouras, O. and Perrichon, V., Microp. Mater., 8, 141 (1997). https://doi.org/10.1016/S0927-6513(96)00079-X
  33. Boutahala, M. and Tedjar, F., Solid States Ionics, 61, 257(1993). https://doi.org/10.1016/0167-2738(93)90363-8
  34. Hajjaji, M., Kacim, S., Alami, A., El-Bouadili, A. and El Mountassir, M., Appl. Clay Sci., 20, 1(2001). https://doi.org/10.1016/S0169-1317(00)00041-7
  35. Madejova, J., Vib. Spectrosc., 31, 1(2003). https://doi.org/10.1016/S0924-2031(02)00065-6
  36. Gadsden, A., Infrared spectra of minerals and related inorganic compounds, The Butterworth group, UK(1975).
  37. Brunauer, S., Emmet, P. H. and Teller, E., J. Am. Chem. Soc., 60, 309(1938). https://doi.org/10.1021/ja01269a023
  38. Barrett, E. P., Joyner, L. G. and Halenda, P. H., J. Am. Chem. Soc., 73, 373(1951). https://doi.org/10.1021/ja01145a126
  39. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K. S. W., Pure Appl. Chem., 87, 1051(2015). https://doi.org/10.1515/pac-2014-1117
  40. Novikova, L., Ayrault, P., Fontaine, C., Chatel, G., Jerome, F. and Belchinskaya, L., Ultrason. Sonochem., 31, 598(2016). https://doi.org/10.1016/j.ultsonch.2016.02.014
  41. Rouquerol, F., Rouquerol, J. and Sing, H., Adsorption by powders and porous solids: principles - methodology and applications, Academic Press London(1999).
  42. Tahani, A., Karroua, M., El Farissi, M., Levitz, P., van Damme, H., Bergaya, F. and Margulies, L., J. Chem. Phys., 96, 464(1999).
  43. He, J., Zhou, Q. H., Guo, J. S. and Fang, F., Environ. Sci. Pollut. R., 25, 22224(2018). https://doi.org/10.1007/s11356-018-2287-5
  44. Acisli, O., Karaca, S. and Gurses, A., Appl. Clay. Sci., 142, 90(2017). https://doi.org/10.1016/j.clay.2016.12.009
  45. Lagergren, S. and Vetenskapsakad, K. S., Handl. Band., 24, 1 (1898).
  46. Ho, Y. S. and McKay, G., Process. Biochem., 34, 451(1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  47. Weber, W. J. and Morris, J. C., Proc. Int. Conf., Water Pollution Symposium, vol. 2. Pergamon, Oxford, pp. 231(1962).
  48. El Nemr, A., Abdelwahab, O., El-sikaily, A. and Khaled, A., J. Hazard. Mater., 161, 102(2009). https://doi.org/10.1016/j.jhazmat.2008.03.060
  49. Shukla, A., Zhang, Y. H., Dubey, P., Margrave, J. L. and Shukla, S. S., J. Hazard. Mater., 95, 137(2002). https://doi.org/10.1016/S0304-3894(02)00089-4
  50. Hameed, B. H., Colloid Surf. A: Physicochem. Eng. Aspects, 307, 45 (2007). https://doi.org/10.1016/j.colsurfa.2007.05.002
  51. Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B. and Mishra, I. M., Colloids Surf. A, 272, 89(2006). https://doi.org/10.1016/j.colsurfa.2005.07.016
  52. Langmuir, I., J. Am. Chem. Soc., 40, 1361(1918). https://doi.org/10.1021/ja02242a004
  53. Langmuir, I., J. Am. Chem. Soc., 38, 2221(1916). https://doi.org/10.1021/ja02268a002
  54. Hall, K. R., Eagleton, L. C., Acrivos, A. and Vermeulen, T., Ind. Eng. Chem. Fundam., 5, 212(1966). https://doi.org/10.1021/i160018a011
  55. Freundlich, H. M. F., Z. Phys. Chem., 57, 385(1906).
  56. Temkin, M. I. and Pyzhev, V., Acta Physiochim., 12, 327(1940).
  57. Fu, Q., Deng, Y., Li, H., Liu, J., Hu, H., Chen, S. and Sa, T., Appl. Surf. Sci., 255(8), 4551(2009). https://doi.org/10.1016/j.apsusc.2008.11.075
  58. Aksu, Z., Tatli, A. I., and Tunc, O., Che. Eng. J., 142, 23(2008). https://doi.org/10.1016/j.cej.2007.11.005