DOI QR코드

DOI QR Code

Effect of machining precision of single ceramic restorations on the marginal and internal fit

단일 도재 수복물의 가공 정밀도가 변연 및 내면 적합도에 미치는 영향

  • Son, Keunbada (Department of Dental Science, Graduate School, Kyungpook National University) ;
  • Yu, Beom-Young (Department of Dental Science, Graduate School, Kyungpook National University) ;
  • Lee, Kyu-Bok (Advanced Dental Device Development Institute (A3DI), Kyungpook National University)
  • 손큰바다 (경북대학교 치과대학 치의과학과) ;
  • 유범영 (경북대학교 치과대학 치의과학과) ;
  • 이규복 (경북대학교 치과대학 첨단치과의료기기개발연구소)
  • Received : 2020.07.21
  • Accepted : 2020.09.14
  • Published : 2020.10.30

Abstract

Purpose: The purpose of this study was to evaluate the machining precision and the marginal and internal fit of single restorations fabricated with three types of lithium disilicate ceramic blocks and to evaluate the correlation. Materials and methods: Single restorations were designed using a CAD software program. The crown designed model file was extracted from the CAD software program. Three types of lithium disilicate blocks (Rosetta; HASS, IPS e.max CAD; Ivoclar vivadent, VITA Suprinity; VITA) were milled using a milling machine. For the fabrication of the crown scanned model file, the intaglio surface of the restoration was digitized using a contact scanner. Then, using the three-dimensional inspection software (Geomagic control X; 3D Systems), the process of the overlap of the crown designed model and the scanned model and 3-dimensional analysis was conducted. In addition, the marginal and internal fit of the crowns was evaluated by a silicone replication method. The difference among three types of single ceramic crown was analyzed using a Kruskal-Wallis H test, and Spearman correlation analysis was performed to analyze the correlation between machining precision and fitness (α=.05). Results: There was a significant difference in the machining precision and the marginal and internal fit according to the type of ceramic block (P<.001). In addition, the machining precision and the marginal and internal fit were positively correlated (P<.001). Conclusion: The marginal fit of crowns fabricated according to the types of ceramic blocks was within the clinically acceptable range (< 120 ㎛), so it can be regarded as appropriate machining precision applicable to all clinical as aspects in terms of the marginal fit.

목적: 본 연구의 목적은 3 종류의 치과용 도재 블록으로 제작된 단일 수복물의 가공 정밀도와 변연 및 내면 적합도를 평가하고, 상관관계를 분석하는 것이다. 재료 및 방법: 3 종류의 치과용 도재 블록(Rosetta; HASS, IPS e.max CAD; Ivoclar vivadent, VITA Suprinity; VITA)으로 제작된 단일 수복물의 가공 정밀도와 변연 및 내면 적합도를 평가하였다. 캐드 소프트웨어에서 단일 수복물을 디자인하였고, 수복물 디자인 모델(crown designed model) 파일의 제작을 위해 디자인 후 캐드 소프트웨어에서 추출하였다. 그리고 수복물 디자인 모델 파일은 밀링 장비를 사용하여 도재 블록(lithium disilicate ceramic block)을 가공하였다. 수복물 스캔 모델(crown scanned model) 파일의 제작을 위해서 접촉식 스캐너를 이용하여 제작된 수복물의 내면을 디지털화 하였다. 그리고 삼차원 검사 소프트웨어(Geomagic control X; 3D Systems)를 이용하여, 수복물 디자인 모델과 스캔 모델의 중첩과 가공 정밀도의 삼차원 분석의 단계로 진행되었다. 그리고 제작된 수복물의 변연 및 내면 적합도는 실리콘 복제 방법으로 평가되었다. 3 종류의 단일 도재 수복물의 차이는 Kruskal-Wallis H test를 통해 분석되었고, 가공 정밀도와 변연 및 내면 적합도의 상관관계를 분석하기 위해서 Spearman correlation analysis을 하였다 (α = .05). 결과: 도재 블록의 종류에 따라서 가공 정밀도와 변연 및 내면 적합도는 유의미한 차이가 있었다 (P < .001). 그리고 가공 정밀도와 변연 및 내면 적합도는 서로 양의 상관관계를 보였다 (P < .001). 결론: 도재 블록의 종류에 따라서 제작된 단일 수복물의 변연 적합도는 임상적 허용 범위에 있었기 때문에(< 120 ㎛), 적합도 측면에서 모두 임상에 적용할 수 있는 적절한 가공 정밀도로 간주할 수 있다.

Keywords

References

  1. Park GH, Son K, Lee KB. Feasibility of using an intraoral scanner for a complete-arch digital scan. J Prosthet Dent 2019;121:803-10. https://doi.org/10.1016/j.prosdent.2018.07.014
  2. Park JM, Kim RJ, Lee KW. Comparative reproducibility analysis of 6 intraoral scanners used on complex intracoronal preparations. J Prosthet Dent 2020;123:113-20. https://doi.org/10.1016/j.prosdent.2018.10.025
  3. Braian M, Wennerberg A. Trueness and precision of 5 intraoral scanners for scanning edentulous and dentate completearch mandibular casts: A comparative in vitro study. J Prosthet Dent 2019;122:129-36. https://doi.org/10.1016/j.prosdent.2018.10.007
  4. Jang D, Son K, Lee KB. A comparative study of the fitness and trueness of a three-unit fixed dental prosthesis fabricated using two digital workflows. Appl Sci 2019;9:1-12.
  5. Lee JJ, Son K, Bae EB, Choi JW, Lee KB, Huh JB. Comparison of the trueness of lithium disilicate crowns fabricated from all-in-one and combination CAD/CAM systems. Int J Prosthodont 2019;32:352-4. https://doi.org/10.11607/ijp.6031
  6. Araujo NS, Moda MD, Silva EA, Zavanelli AC, Mazaro JV, Pellizzer EP. Survival of all-ceramic restorations after a minimum follow-up of five years: A systematic review. Quintessence Int 2016;47:395-405.
  7. Bosch G, Ender A, Mehl A. A 3-dimensional accuracy analysis of chairside CAD/CAM milling processes. J Prosthet Dent 2014;112:1425-31. https://doi.org/10.1016/j.prosdent.2014.05.012
  8. Kirsch C, Ender A, Attin T, Mehl A. Trueness of four different milling procedures used in dental CAD/CAM systems. Clin Oral Investig 2017;21:551-8. https://doi.org/10.1007/s00784-016-1916-y
  9. Martinez S, Cuesta E, Barreiro J, Alvarez B. Analysis of laser scanning and strategies for dimensional and geometrical control. Int J Adv Manuf Tech 2010;46:621-9 https://doi.org/10.1007/s00170-009-2106-8
  10. Choi YK, Banerjee A. Tool path generation and tolerance analysis for free-form surfaces. Int J Mach Tool Manu 2007;47:689-96. https://doi.org/10.1016/j.ijmachtools.2006.04.014
  11. Wang W, Yu H, Liu Y, Jiang X, Gao B. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J Prosthet Dent 2019;121:285-91. https://doi.org/10.1016/j.prosdent.2018.04.012
  12. Son K, Yu BY, Yoon TH, Lee KB. Comparative study of the trueness of the inner surface of crowns fabricated from three types of lithium disilicate blocks. Appl Sci 2019;9:1798. https://doi.org/10.3390/app9091798
  13. Papadiochou S, Pissiotis AL. Marginal adaptation and CADCAM technology: A systematic review of restorative material and fabrication techniques. J Prosthet Dent 2018;119:545-51. https://doi.org/10.1016/j.prosdent.2017.07.001
  14. de Paula Silveira AC, Chaves SB, Hilgert LA, Ribeiro AP. Marginal and internal fit of CAD-CAM-fabricated composite resin and ceramic crowns scanned by 2 intraoral cameras. J Prosthet Dent 2017;117:386-92. https://doi.org/10.1016/j.prosdent.2016.07.017
  15. Renne W, Wolf B, Kessler R, McPherson K, Mennito AS. Evaluation of the marginal fit of CAD/CAM crowns fabricated using two different chairside CAD/CAM systems on preparations of varying quality. J Esthet Restor Dent 2015;27:194-202. https://doi.org/10.1111/jerd.12148
  16. Son K, Lee S, Kang SH, Park J, Lee KB, Jeon M, Yun BJ. A comparison study of marginal and internal fit assessment methods for fixed dental prostheses. J Clin Med 2019;8:785. https://doi.org/10.3390/jcm8060785
  17. Dolev E, Bitterman Y, Meirowitz A. Comparison of marginal fit between CAD-CAM and hot-press lithium disilicate crowns. J Prosthet Dent 2019;121:124-8. https://doi.org/10.1016/j.prosdent.2018.03.035
  18. Lee DH. Digital approach to assessing the 3-dimensional misfit of fixed dental prostheses. J Prosthet Dent 2016;116:836-9. https://doi.org/10.1016/j.prosdent.2016.05.012
  19. Son K, Lee WS, Lee KB. Prediction of the learning curves of 2 dental CAD software programs. J Prosthet Dent 2019;121:95-100. https://doi.org/10.1016/j.prosdent.2018.01.004
  20. Son K, Lee KB. Prediction of learning curves of 2 dental CAD software programs, part 2: Differences in learning effects by type of dental personnel. J Prosthet Dent 2020;123:747-52. https://doi.org/10.1016/j.prosdent.2019.05.026
  21. Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater 2016;32:908-14. https://doi.org/10.1016/j.dental.2016.03.013
  22. Dancey C, Reidy J. Statistics without maths for psychology. Pearson Higher Ed; 2014. p. 124-56.
  23. Colombo M, Poggio C, Lasagna A, Chiesa M, Scribante A. Vickers micro-hardness of new restorative CAD/CAM dental materials: evaluation and comparison after exposure to acidic drink. Materials (Basel) 2019;12:1246. https://doi.org/10.3390/ma12081246
  24. Song XF, Ren HT, Yin L. Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process. J Mech Behav Biomed Mater 2016;53:78-92. https://doi.org/10.1016/j.jmbbm.2015.08.003
  25. Bohez EL. Compensating for systematic errors in 5-axis NC machining. Comput Aided Des 2002;34:391-403. https://doi.org/10.1016/S0010-4485(01)00111-7
  26. Kim CM, Kim SR, Kim JH, Kim HY, Kim WC. Trueness of milled prostheses according to number of ball-end mill burs. J Prosthet Dent 2016;115:624-9. https://doi.org/10.1016/j.prosdent.2015.10.014