References
- J. Wee, Applications of proton exchange membrane fuel cell systems, Renew. Sustain. Energy Rev., 11, 1720-1738 (2007). https://doi.org/10.1016/j.rser.2006.01.005
- O. Erdinc and M. Uzunoglu, A recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy, Renew. Sustain. Energy Rev., 14, 2874-2884 (2010). https://doi.org/10.1016/j.rser.2010.07.060
- D. Lee, A. Elgowainy, A. Kotz, R. Vijayagopal, and J. Marcinkoski, Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks, J. Power Sources, 393, 217-229 (2018) https://doi.org/10.1016/j.jpowsour.2018.05.012
- S. Park, J. Lee, and B. N. Popov, A review of gas diffusion layer in PEM fuel cells: Materials and designs, Int. J. Hydrogen Energy, 37, 5850-5865 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.148
- R. Omrani and B. Shabani, Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: A review, Int. J. Hydrogen Energy, 42, 28515-28536 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.132
- H. Lee, J. Park, D. Kim, and T. Lee, A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC, J. Power Sources, 131, 200-206 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.039
- R. Roshandel, B. Farhanieh, and E. Saievar-Iranizad, The effects of porosity distribution variation on PEM fuel cell performance, Renew. Energ., 30, 1557-1572 (2005). https://doi.org/10.1016/j.renene.2004.11.017
- S. Park, J. Lee, and B. N. Popov, Effect of PTFE content in microporous layer on water management in PEM fuel cells, J. Power Sources, 177, 457-463 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.055
- M. Mortazavi and K. Tajiri, Effect of the PTFE content in the gas diffusion layer on water transport in polymer electrolyte fuel cells, J. Power Sources, 245, 236-244 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.138
- Y. Chen, T. Tian, Z. Wan, F. Wu, J. Tan, and M. Pan, Influence of PTFE on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell, Int. J. Electrochem. Sci., 13, 3827-2842 (2018).
- T. Chen, S. Liu, J. Zhang, and M. Tang, Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC, Int. J. Heat Mass Transf., 128, 1168-1174 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.097
- J. Nam, K. Lee, G. Hwang, C. Kim, and M. Kaviany, Microporous layer for water morphology control in PEMFC, Int. J. Heat Mass Transf., 52, 2779-2791 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.002
- H. Markotter, J. Haussmann, R. Alink, C. Totzke, T. Arlt, M. Klages, H. Riesemeier, J. Scholta, D. Gerteisen, J. Banhart, and I. Manke, Influence of cracks in the microporous layer on the water distribution in a PEM fuel cell investigated by synchrotron radiography, Electrochem. Commun., 34, 22-24 (2013). https://doi.org/10.1016/j.elecom.2013.04.006
- P. Deevanhxay, T. Sasabe, S. Tsushima, and S. Hirai, Effect of liquid water distribution in gas diffusion media with and without microporous layer on PEM fuel cell performance, Electrochem. Commun., 34, 239-241 (2013). https://doi.org/10.1016/j.elecom.2013.07.001
- R. B. Ferreira, D. S. Fackcao, V. B. Oliveira, and A. M. F. R. Pinto, Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment, Electrochim. Acta, 224, 337-345 (2017). https://doi.org/10.1016/j.electacta.2016.12.074
- J. Ge, A. Higier, and H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance, J. Power Sources, 159, 922-927 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.069
- Y. Wu, J. I. S. Cho, X. Lu, L. Rasha, T. P. Neville, J. Millichamp, R. Ziesche, N. Kardjilov, H. Markotter, P. Shearing, D. J. L. Brett, Effect of compression on the water management of polymer electrolyte fuel cells: An in-operando neutron radiography study, J. Power Sources, 412, 597-605 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.048
- C. Simon, F. Hasche, and H. A. Gasteiger, Influence of the gas diffusion layer compression on the oxygen transport in PEM fuel cells at high water saturation levels, J. Electrochem. Soc., 164, F591-F599 (2017). https://doi.org/10.1149/2.0691706jes
- J. Kim, S. Lee, and S. Srinivasan, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc., 8, 2670-2674 (1995).
- G. Squadrito, G. Maggio, E. Passalacqua, F. Lufrano, and A. Patti, An empirical equation for polymer electrolyte fuel cell (PEFC) behavior, J. Appl. Electrochem., 29, 1449-1455 (1999). https://doi.org/10.1023/A:1003890219394
- L. Pisani, G. Murgia, M. Valentini, and B. D'Aguanno, A new semi-empirical approach to performance curves of polymer electrolyte fuel cells, J. Power Sources, 108, 192-203 (2002). https://doi.org/10.1016/S0378-7753(02)00014-9
- S. D. Fraser and V. Hacker, An empirical fuel cell polarization curve fitting equation for small current densities and no-load operation, J. Appl. Electrochem., 38, 451-456 (2008). https://doi.org/10.1007/s10800-007-9458-2
- D. Hao, J. Shen, Y. Hou, Y. Zhou, and H. Wang, An improved empirical fuel cell polarization curve model based on review analysis, Int. J. Chem. Eng., 16, 1-10 (2016).
- I. Han, S. Park, and C. Chung, Effect of gas diffusion layer compression on the polarization curve of a polymer electrolyte membrane fuel cell: Analysis using a polarization curve-fitting model, Korean J. Chem. Eng., 33(11), 3121-3127 (2016). https://doi.org/10.1007/s11814-016-0157-8