DOI QR코드

DOI QR Code

Polymer Electrolyte Membranes for Flexible Electrochromic Device

플렉시블 전기변색 소자를 위한 고분자 전해질 멤브레인

  • Lee, Ji-Hyeon (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
  • 이지현 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2020.10.15
  • Accepted : 2020.10.23
  • Published : 2020.10.31

Abstract

In this study, the optimum design conditions of a polymer electrolyte membrane for application to a flexible electrochromic device (ECD) were tried to be derived. Polyvinyl butyral (PVB) with excellent adhesive property and transparency was selected as the base polymer for the preparation of the electrolyte membrane, and adipate-based polymer was used as the plasticizer. As a result, it was confirmed that the most influential factors on the ECD performance were the ionic conductivity and permeability of the electrolyte membrane. In addition, it was found that the factor has a close relationship with the dissociation property of the lithium salt. Overall, the optimal ECD performance was achieved when LiTFSI salt having a large anion size among various lithium salts was dissolved in a content of about 25 wt.%.

본 연구에서는 플렉시블 전기변색 소자(ECD)에 적용하기 위한 고분자 전해질 멤브레인의 최적 설계 조건을 도출하고자 하였다. 전해질 멤브레인의 제조를 위한 기저 고분자로 접착력 및 투명도가 우수한 polyvinyl butyral (PVB)을 선정하였으며 가소제로는 adipate계 고분자를 사용하였다. 실험결과, ECD 성능에 가장 큰 영향을 미치는 인자는 전해질 멤브레인의 이온 전도도 및 투과도임을 확인할 수 있었다. 또한 상기 인자는 리튬염의 해리 특성과 밀접한 관계를 갖고 있음을 알 수 있었다. 종합적으로 다양한 리튬염 중 음이온의 크기가 큰 LiTFSI 염이 25 wt.% 정도의 함량으로 용해될 때 최적의 ECD 성능을 확인할 수 있었다.

Keywords

References

  1. X. Wu, Y. Wu, C. Zhang, H. Niu, L. Lei, C. Qin, C. Wang, X. Baia, and W. Wang, "Polyurethanes prepared from isocyanates containing triphenylamine derivatives optical, electrochemical, electrochromic and memory properties", RSC Adv., 5, 58843 (2015). https://doi.org/10.1039/C5RA09361A
  2. R. Leones, R. C. Sabadinic, F. C. Sentaninc, J. M. S. S. Esperança, A. Pawlicka, and M. M. Silva, "Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routes", Sol. Energy Mater Sol. Cells, 169, 98 (2017). https://doi.org/10.1016/j.solmat.2017.04.047
  3. M. Fernandes, V. Freitas, S. Pereira, R. Leones, M. M. Silva, L. D. Carlos, E. Fortunato, R. A. S. Ferreira, R. Rego, and V. Z. Bermudez, "Luminescent electrochromic devices for smart windows of energy-efficient Buildings", Energies, 11, 3513 (2018). https://doi.org/10.3390/en11123513
  4. D. H. Choi, M. H. Son, T. H. Im, S. H. Ahn, and C. S. Lee, "Crack-free fabrication of prussian blue-based blending film for the dramatic enhancement of dual electrochromic device", Ceram. Int., 46, 21008 (2020). https://doi.org/10.1016/j.ceramint.2020.05.166
  5. E. Eren, M. F. Aydin, and A. U. Oksuz, "A practical approach for generation of $WO_3$-based flexible electrochromic devices", J. Solid State Electrochem., 24, 1057 (2020). https://doi.org/10.1007/s10008-020-04588-0
  6. D. Zhou, D. Xie, X. Xia, X. Wang, C. Gu, and J. Tu, "All-solid-state electrochromic devices based on WO3$\parallel$NiO films: material developments and future applications", Sci. China Chem., 60, 3 (2017). https://doi.org/10.1007/s11426-016-0279-3
  7. T. Winie, A. K. Arof, and S. Thomas, "Polymer electrolytes: characterization techniques and energy applications", pp. 365-389, John Wiley and Sons, New York, NY (2019).
  8. J. Pan, R. Zheng, Y. Wang, X. Ye, Z. Wan, C. Jia, X. Weng, J. Xie, and L. Deng, "A high-performance electrochromic device assembled with hexagonal $WO_3$ and NiO/PB composite nanosheet electrodes towards energy storage smart window", Sol. Energy Mater Sol. Cells., 207, 110337 (2020). https://doi.org/10.1016/j.solmat.2019.110337
  9. A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, "Recent advances in flexible electrochromic devices: Prerequisites, challenges, and prospects", Energy Technol., 6, 33 (2018). https://doi.org/10.1002/ente.201700705
  10. A. L. S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, "Recent advances in flexible electrochromic devices: The prerequisites, challenges and prospects", Energy Technol., 6, 33 (2017). https://doi.org/10.1002/ente.201700705
  11. S. Guan, W. Wang, J. Zheng, and C. Xu, "A method to achieve full incorporation of PMMA-based gel electrolyte in fiber-structured PVB for solid-state electrochromic device fabrication", Electrochim. Acta, 354, 136702 (2020). https://doi.org/10.1016/j.electacta.2020.136702
  12. J. Comyn, "Handbook of adhesives and sealants", pp. 1-50, Elsevier, Amsterdam (2006).
  13. S. Ebnesajjad, "Handbook of adhesives and surface preparation", pp. 137-183, Elsevier, Amsterdam (2011).
  14. R. H. Lambeth and A. Rizvi, "Mechanical and adhesive properties of hybrid epoxy-polyhydroxyurethane network polymers", Polymer, 183, 121881 (2019). https://doi.org/10.1016/j.polymer.2019.121881
  15. X. Li, J. Ke, J. Wang, M. Kang, Y. Zhao, Q. Li, and C. Liang, "$CO_2$ derived amino-alcohol compounds for preparation of polyurethane adhesives", J. $CO_2$ Util., 31, 198 (2019).
  16. O. Olabisi and K. Adewale, "Handbook of thermoplastics", pp. 90-137, CRC Press, Boca Raton, FL (2015).
  17. E. J. Grojzdek, M. Kunaver, D. Kukanja, and D. Moder, "Renewable (waste) material based polyesters as plasticizers for adhesives", Int. J. Adhes. Adhes., 46, 56 (2013). https://doi.org/10.1016/j.ijadhadh.2013.05.015
  18. N. B. Halima, "Poly(vinyl alcohol): Review of its promising applications and insights into biodegradation", RSC Adv., 6, 39823 (2016). https://doi.org/10.1039/C6RA05742J
  19. Y. Li and S. Ren, "Building decorative materials", pp. 325-341, Elsevier, Amsterdam (2011).
  20. E. Corroyer, M. C. B. Salon, D. Chaussy, S. Wery, and M. N. Belgacem, "Characterization of commercial polyvinylbutyrals", Int. J. Polym. Anal. Charact., 18, 346 (2013). https://doi.org/10.1080/1023666X.2013.784940
  21. F. N. Nguyen and J. C. Berg, "The effect of vinyl alcohol content on adhesion performance in poly(vinyl butyral)/glass systems", J. Adhes. Sci. Technol., 18, 1011 (2004). https://doi.org/10.1163/1568561041257469
  22. G. P. T. Ganesh, and B. Deb, "Designing an all-solid- state tungsten oxide based electrochromic switch with a superior cycling efficiency", Adv. Mater. In terfaces, 4, 1700124 (2017). https://doi.org/10.1002/admi.201700124
  23. K.-K. Lee, K. Park, H. Lee, Y. Noh, D. Kossowska, K. Kwak, and M. Cho, "Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery", Nat. Commun., 8, 14658 (2017). https://doi.org/10.1038/ncomms14658
  24. M. Ue, "Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and ${\gamma}$-butyrolactone", J. Electrochem. Soc., 141, 3336 (1994). https://doi.org/10.1149/1.2059336
  25. A. Arya and A. L. Sharma, "Polymer electrolytes for lithium ion batteries: A critical study", Ionics, 23, 497 (2017). https://doi.org/10.1007/s11581-016-1908-6