DOI QR코드

DOI QR Code

Performance Study of Membrane Capacitive Deionization (MCDI) Cell Constructed with Nafion and Aminated Polyphenylene Oxide (APPO)

Nafion과 Aminated Polyphenylene Oxide (APPO)를 적용한 막 축전식 탈염 공정의 성능 연구

  • Kim, Ji Su (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 김지수 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2020.10.16
  • Accepted : 2020.10.24
  • Published : 2020.10.31

Abstract

A membrane capacitive deionization (MCDI) cell is constructed by applying thin layer of a cation exchange membrane (Nafion) on cathode and an anion exchange membrane (aminated polyphenylene oxide, APPO) on anode. Compared to CDI cell without CEM and AEM coating, MCDI exhibits enhanced salt removal efficiency. When Nafion and APPO are used as CEM and AEM, optimized salt removal performance as high as 82.1% is observed when 1.2 V is applied for 3 min during absorption process and -1.0 V is applied for 1 min during desorption.

본 연구에서는 다공성 탄소 전극의 음극과 양극 표면에 각각 양이온교환고분자(Nafion)와 음이온교환고분자(aminated polyphenylene oxide, APPO)를 코팅하여 막 결합형 축전식 탈염(membrane capacitive deionization, MCDI) 공정에 적용하였다. 또한 위 공정의 성능을 탄소 전극만으로 구성한 축전식 탈염(capacitive deionization, CDI) 공정과 비교 평가해 보고 염 제거 효율이 최대로 나타나는 MCDI 공정의 최적 운전 조건을 탐색하고자 하였다. 염 제거 효율은 MCDI 공정이 CDI 공정에 비해 높게 나타났으며 Nafion과 APPO를 적용한 MCDI 공정에서 흡착 조건이 1.2 V, 3 min이고 탈착 조건이 -1.0 V, 1 min 일 때의 염 제거 효율이 82.1%로 최댓값을 보임을 확인했다.

Keywords

References

  1. H. K. Park, "Seawater desalination: Possibility as an alternative water resource", KSCE J. Civ. Eng., 46, 28 (1998).
  2. M. P. Shim, "Water for future-conditions for survival in the 21st century", Water for Future, 39, 61 (2006).
  3. E. O. Ko, J. D. Moon, and J. M. Park, "Status-ofarts of desalination technology", Membr. J., 20, 185 (2010).
  4. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  5. J. W. Lee, H. I. Kim, H. J. Kim, H. S. Shin, J. S. Kim, B. I. Jeong, and S. G. Park, "Desalination effects of capacitive deionization process using activated carbon composite electrodes", J. Korean Electrochem. Soc., 12, 287 (2009). https://doi.org/10.5229/JKES.2009.12.3.287
  6. J. A. Lim, N. S. Park, J. S. Park, and J. H. Choi, "Fabrication and characterization of a porous carbon electrode for desalination of brackish water", Desalination, 238, 37 (2009). https://doi.org/10.1016/j.desal.2008.01.033
  7. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, "Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel eletrodes", J. Electrochem. Soc., 143, 159 (1996). https://doi.org/10.1149/1.1836402
  8. W. K. Son, T. I. Kim, H. J. Han, and K. S. Kang, "The study of capacitive deionization technology by the analysis of patents and papers", Korean Chem. Eng. Res., 49, 697 (2011) https://doi.org/10.9713/kcer.2011.49.6.697
  9. M. A. Anderson, A. L. Cudero, and J. Palma, "Effective modified carbon nanofibers as electrodes for capacitive deionization process", Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  10. Y. S. Jeon and J. W. Rhim, "Performance study on application of higher adsorption voltages than water dissociation voltage in membrane capacitive deionization (MCDI) process", Polymer(Korea), 42, 446 (2018). https://doi.org/10.7317/pk.2018.42.3.446
  11. J. S. Kim, C. S. Kim, H. S. Shin, and J. W. Rhim, "Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI)", Macromol. Res., 23, 360 (2015). https://doi.org/10.1007/s13233-015-3049-6
  12. D. D. Caudle, J. H. Tucker, J. L. Cooper, B. B. Arnold, and A. Papastamataki, "Electrochemical demineralization of water with carbon electrodes", Research Report, Oklahoma Univ. Research Institute (1966).
  13. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, "Desalination of a thermal power plant wastewater by membrane capacitive deionization", Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  14. Y. J. Kim and J. H. Choi, "Desalination of brackish water by capacitive deionization system combined with ion-exchange membrane", Appl. Chem. Eng., 21, 87 (2010).
  15. P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  16. W. S. Yun, S. I. Cheong, and J. W. Rhim, "Effect of ion exchange capacity on salt removal rate in membrane capacitive deionization process", Membr. J., 28, 332 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.332
  17. H. Li and L. Zou, "Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination", Desalination, 275, 62 (2011). https://doi.org/10.1016/j.desal.2011.02.027
  18. K. Y. Kim, "Study of membrane capacitive deionization process applied by ion exchange membrane", Master's thesis, Hannam Univ., Daejeon, Korea (2016).