DOI QR코드

DOI QR Code

Therapeutic potential of targeting kinase inhibition in patients with idiopathic pulmonary fibrosis

  • Kim, Suji (Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine) ;
  • Lim, Jae Hyang (Department of Microbiology, Ewha Womans University College of Medicine) ;
  • Woo, Chang-Hoon (Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine)
  • Received : 2020.06.08
  • Accepted : 2020.07.02
  • Published : 2020.10.31

Abstract

Fibrosis is characterized by excessive accumulation of extracellular matrix components. The fibrotic process ultimately leads to organ dysfunction and failure in chronic inflammatory and metabolic diseases such as pulmonary fibrosis, advanced kidney disease, and liver cirrhosis. Idiopathic pulmonary fibrosis (IPF) is a common form of progressive and chronic interstitial lung disease of unknown etiology. Pathophysiologically, the parenchyma of the lung alveoli, interstitium, and capillary endothelium becomes scarred and stiff, which makes breathing difficult because the lungs have to work harder to transfer oxygen and carbon dioxide between the alveolar space and bloodstream. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis and scarring of the lung tissue. Recent clinical trials focused on the development of pharmacological agents that either directly or indirectly target kinases for the treatment of IPF. Therefore, to develop therapeutic targets for pulmonary fibrosis, it is essential to understand the key factors involved in the pathogenesis of pulmonary fibrosis and the underlying signaling pathway. The objective of this review is to discuss the role of kinase signaling cascades in the regulation of either TGF-β-dependent or other signaling pathways, including Rho-associated coiled-coil kinase, c-jun N-terminal kinase, extracellular signal-regulated kinase 5, and p90 ribosomal S6 kinase pathways, and potential therapeutic targets in IPF.

Keywords

References

  1. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014;15:786-801. https://doi.org/10.1038/nrm3904
  2. Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta 2013;1832:876-83. https://doi.org/10.1016/j.bbadis.2012.11.002
  3. Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochim Biophys Acta 2013;1832:1049-60. https://doi.org/10.1016/j.bbadis.2012.09.014
  4. Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 2010;48:1-15. https://doi.org/10.1016/j.freeradbiomed.2009.09.026
  5. Rockey DC, Bell PD, Hill JA. Fibrosis: a common pathway to organ injury and failure. N Engl J Med 2015;372:1138-49. https://doi.org/10.1056/NEJMra1300575
  6. King TE Jr. Clinical advances in the diagnosis and therapy of the interstitial lung diseases. Am J Respir Crit Care Med 2005;172:268-79. https://doi.org/10.1164/rccm.200503-483OE
  7. Strongman H, Kausar I, Maher TM. Incidence, prevalence, and survival of patients with idiopathic pulmonary fibrosis in the UK. Adv Ther 2018;35:724-36. https://doi.org/10.1007/s12325-018-0693-1
  8. Hopkins RB, Burke N, Fell C, Dion G, Kolb M. Epidemiology and survival of idiopathic pulmonary fibrosis from national data in Canada. Eur Respir J 2016;48:187-95. https://doi.org/10.1183/13993003.01504-2015
  9. Raghu G. Idiopathic pulmonary fibrosis: lessons from clinical trials over the past 25 years. Eur Respir J 2017;50:1701209. https://doi.org/10.1183/13993003.01209-2017
  10. Noble PW, Homer RJ. Idiopathic pulmonary fibrosis: new insights into pathogenesis. Clin Chest Med 2004;25:749-58. https://doi.org/10.1016/j.ccm.2004.04.003
  11. Thannickal VJ, Toews GB, White ES, Lynch JP 3rd, Martinez FJ. Mechanisms of pulmonary fibrosis. Annu Rev Med 2004;55:395-417. https://doi.org/10.1146/annurev.med.55.091902.103810
  12. Saito A, Horie M, Nagase T. TGF-${\beta}$ signaling in lung health and disease. Int J Mol Sci 2018;19:2460. https://doi.org/10.3390/ijms19082460
  13. Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 2004;85:47-64. https://doi.org/10.1111/j.0959-9673.2004.00377.x
  14. Nakerakanti S, Trojanowska M. The role of TGF-${\beta}$ receptors in fibrosis. Open Rheumatol J 2012;6:156-62. https://doi.org/10.2174/1874312901206010156
  15. Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 2008;1782:197-228. https://doi.org/10.1016/j.bbadis.2008.01.006
  16. Hoyt DG, Lazo JS. Alterations in pulmonary mRNA encoding procollagens, fibronectin and transforming growth factor-beta precede bleomycin-induced pulmonary fibrosis in mice. J Pharmacol Exp Ther 1988;246:765-71.
  17. Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A 1991;88:6642-6. https://doi.org/10.1073/pnas.88.15.6642
  18. Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH, et al. Transforming growth factor ${\beta}$-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 2013;182:118-31. https://doi.org/10.1016/j.ajpath.2012.09.009
  19. Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Yu, Pierschbacher MD, et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 1992;360:361-4. https://doi.org/10.1038/360361a0
  20. Isaka Y, Tsujie M, Ando Y, Nakamura H, Kaneda Y, Imai E, et al. Transforming growth factor-beta 1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 2000;58:1885-92. https://doi.org/10.1111/j.1523-1755.2000.00360.x
  21. Takabatake Y, Isaka Y, Mizui M, Kawachi H, Shimizu F, Ito T, et al. Exploring RNA interference as a therapeutic strategy for renal disease. Gene Ther 2005;12:965-73. https://doi.org/10.1038/sj.gt.3302480
  22. Zhao J, Shi W, Wang YL, Chen H, Bringas P Jr, Datto MB, et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 2002;282:L585-93. https://doi.org/10.1152/ajplung.00151.2001
  23. Zi Z, Chapnick DA, Liu X. Dynamics of TGF-${\beta}$/Smad signaling. FEBS Lett 2012;586:1921-8. https://doi.org/10.1016/j.febslet.2012.03.063
  24. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res 2009;19:128-39. https://doi.org/10.1038/cr.2008.328
  25. Bringardner BD, Baran CP, Eubank TD, Marsh CB. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal 2008;10:287-301. https://doi.org/10.1089/ars.2007.1897
  26. Selman M, Pardo A. Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respir Res 2002;3:3. https://doi.org/10.1186/rr175
  27. Sakai N, Tager AM. Fibrosis of two: epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochim Biophys Acta 2013;1832:911-21. https://doi.org/10.1016/j.bbadis.2013.03.001
  28. Camelo A, Dunmore R, Sleeman MA, Clarke DL. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol 2014;4:173. https://doi.org/10.3389/fphar.2013.00173
  29. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014;370:2071-82. https://doi.org/10.1056/NEJMoa1402584
  30. Ogura T, Taniguchi H, Azuma A, Inoue Y, Kondoh Y, Hasegawa Y, et al. Safety and pharmacokinetics of nintedanib and pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 2015;45:1382-92. https://doi.org/10.1183/09031936.00198013
  31. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 2010;35:821-9. https://doi.org/10.1183/09031936.00005209
  32. Gurujeyalakshmi G, Hollinger MA, Giri SN. Pirfenidone inhibits PDGF isoforms in bleomycin hamster model of lung fibrosis at the translational level. Am J Physiol 1999;276:L311-8. https://doi.org/10.1152/ajplung.1999.276.2.L311
  33. Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther 1999;291:367-73.
  34. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 2011;377:1760-9. https://doi.org/10.1016/S0140-6736(11)60405-4
  35. Lopez-de la Mora DA, Sanchez-Roque C, Montoya-Buelna M, Sanchez-Enriquez S, Lucano-Landeros S, Macias-Barragan J, et al. Role and new insights of pirfenidone in fibrotic diseases. Int J Med Sci 2015;12:840-7. https://doi.org/10.7150/ijms.11579
  36. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014;370:2083-92. https://doi.org/10.1056/NEJMoa1402582
  37. Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z. Adverse events of pirfenidone for the treatment of pulmonary fibrosis: a meta-analysis of randomized controlled trials. PLoS One 2012;7:e47024. https://doi.org/10.1371/journal.pone.0047024
  38. Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 2015;45:1434-45. https://doi.org/10.1183/09031936.00174914
  39. Hostettler KE, Zhong J, Papakonstantinou E, Karakiulakis G, Tamm M, Seidel P, et al. Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Respir Res 2014;15:157. https://doi.org/10.1186/s12931-014-0157-3
  40. Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther 2014;349:209-20. https://doi.org/10.1124/jpet.113.208223
  41. Richeldi L, Cottin V, Flaherty KR, Kolb M, Inoue Y, Raghu G, et al. Design of the $INPULSIS^{TM}$ trials: two phase 3 trials of nintedanib in patients with idiopathic pulmonary fibrosis. Respir Med 2014;108:1023-30. https://doi.org/10.1016/j.rmed.2014.04.011
  42. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-${\beta}$: the master regulator of fibrosis. Nat Rev Nephrol 2016;12:325-38. https://doi.org/10.1038/nrneph.2016.48
  43. Choi ME. Mechanism of transforming growth factor-${\beta}$1 signaling: role of the mitogen-activated protein kinase. Kidney Int 2000;58(Suppl 77):S53-8. https://doi.org/10.1046/j.1523-1755.2000.07709.x
  44. Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 2006;119(Pt 23):4803-10. https://doi.org/10.1242/jcs.03270
  45. Yue X, Shan B, Lasky JA. TGF-${\beta}$: titan of lung fibrogenesis. Curr Enzym Inhib 2010;6:10.2174/10067.
  46. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007;117:557-67. https://doi.org/10.1172/JCI31139
  47. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425:577-84. https://doi.org/10.1038/nature02006
  48. Das F, Ghosh-Choudhury N, Venkatesan B, Li X, Mahimainathan L, Choudhury GG. Akt kinase targets association of CBP with SMAD 3 to regulate TGFbeta-induced expression of plasminogen activator inhibitor-1. J Cell Physiol 2008;214:513-27. https://doi.org/10.1002/jcp.21236
  49. Munger JS, Huang X, Kawakatsu H, Griffiths MJD, Dalton SL, Wu J, et al. The integrin ${\alpha}v{\beta}6$ binds and activates latent $TGF{\beta}1$: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96:319-28. https://doi.org/10.1016/S0092-8674(00)80545-0
  50. Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T, et al. Regulation of transforming growth factor-${\beta}1$-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 2012;185:537-46. https://doi.org/10.1164/rccm.201106-0965OC
  51. Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 1999;20:189-206. https://doi.org/10.1210/er.20.2.189
  52. Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T, et al. Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 2002;23:769-76. https://doi.org/10.1093/carcin/23.5.769
  53. Shimo T, Nakanishi T, Nishida T, Asano M, Sasaki A, Kanyama M, et al. Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncology 2001;61:315-22. https://doi.org/10.1159/000055339
  54. Takigawa M. CTGF/Hcs24 as a multifunctional growth factor for fibroblasts, chondrocytes and vascular endothelial cells. Drug News Perspect 2003;16:11-21. https://doi.org/10.1358/dnp.2003.16.1.829302
  55. Igarashi A, Okochi H, Bradham DM, Grotendorst GR. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 1993;4:637-45. https://doi.org/10.1091/mbc.4.6.637
  56. Grotendorst GR, Okochi H, Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 1996;7:469-80.
  57. Shimo T, Kubota S, Kondo S, Nakanishi T, Sasaki A, Mese H, et al. Connective tissue growth factor as a major angiogenic agent that is induced by hypoxia in a human breast cancer cell line. Cancer Lett 2001;174:57-64. https://doi.org/10.1016/S0304-3835(01)00683-8
  58. Suzuma K, Naruse K, Suzuma I, Takahara N, Ueki K, Aiello LP, et al. Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J Biol Chem 2000;275:40725-31. https://doi.org/10.1074/jbc.M006509200
  59. Lau LF. Cell surface receptors for CCN proteins. J Cell Commun Signal 2016;10:121-7. https://doi.org/10.1007/s12079-016-0324-z
  60. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, et al. Cooperative interaction of CTGF and TGF-${\beta}$ in animal models of fibrotic disease. Fibrogenesis Tissue Repair 2011;4:4. https://doi.org/10.1186/1755-1536-4-4
  61. Kono M, Nakamura Y, Suda T, Kato M, Kaida Y, Hashimoto D, et al. Plasma CCN2 (connective tissue growth factor; CTGF) is a potential biomarker in idiopathic pulmonary fibrosis (IPF). Clin Chim Acta 2011;412:2211-5. https://doi.org/10.1016/j.cca.2011.08.008
  62. Pan LH, Yamauchi K, Uzuki M, Nakanishi T, Takigawa M, Inoue H, et al. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur Respir J 2001;17:1220-7. https://doi.org/10.1183/09031936.01.00074101
  63. Gabbiani G. Modulation of fibroblastic cytoskeletal features during wound healing and fibrosis. Pathol Res Pract 1994;190:851-3. https://doi.org/10.1016/S0344-0338(11)80988-X
  64. Sandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 2011;158:181-96. https://doi.org/10.1016/j.trsl.2011.05.004
  65. Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev 2015;67:103-17. https://doi.org/10.1124/pr.114.009381
  66. Zhou Y, Huang X, Hecker L, Kurundkar D, Kurundkar A, Liu H, et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J Clin Invest 2013;123:1096-108. https://doi.org/10.1172/JCI66700
  67. Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT): a prospective, open- label, randomized study. Am J Respir Crit Care Med 2018;198:1559-69. https://doi.org/10.1164/rccm.201807-1318OC
  68. Yoshida K, Kuwano K, Hagimoto N, Watanabe K, Matsuba T, Fujita M, et al. MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis. J Pathol 2002;198:388-96. https://doi.org/10.1002/path.1208
  69. Alcorn JF, van der Velden J, Brown AL, McElhinney B, Irvin CG, Janssen-Heininger YM. c-Jun N-terminal kinase 1 is required for the development of pulmonary fibrosis. Am J Respir Cell Mol Biol 2009;40:422-32. https://doi.org/10.1165/rcmb.2008-0174OC
  70. Van der Velden JL, Alcorn JF, Chapman DG, Lundblad LK, Irvin CG, Davis RJ, et al. Airway epithelial specific deletion of Jun-N-terminal kinase 1 attenuates pulmonary fibrosis in two independent mouse models. PLoS One 2020;15:e0226904. https://doi.org/10.1371/journal.pone.0226904
  71. Bennett B, Blease K, Ye Y, Azaryan A, Ramirez-Valle F, Ceres R, et al. CC-90001, a second generation Jun N-terminal kinase (JNK) inhibitor for the treatment of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2017;195:A5409.
  72. Van der Velden JL, Ye Y, Nolin JD, Hoffman SM, Chapman DG, Lahue KG, et al. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin Transl Med 2016;5:36.
  73. Clement DL, Mally S, Stock C, Lethan M, Satir P, Schwab A, et al. PDGFR${\alpha}$ signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90RSK and AKT signaling pathways. J Cell Sci 2013;126(Pt 4):953-65. https://doi.org/10.1242/jcs.116426
  74. Delehedde M, Seve M, Sergeant N, Wartelle I, Lyon M, Rudland PS, et al. Fibroblast growth factor-2 stimulation of p42/44MAPK phosphorylation and IkappaB degradation is regulated by heparan sulfate/heparin in rat mammary fibroblasts. J Biol Chem 2000;275:33905-10. https://doi.org/10.1074/jbc.M005949200
  75. Seko Y, Takahashi N, Tobe K, Ueki K, Kadowaki T, Yazaki Y. Vascular endothelial growth factor (VEGF) activates Raf-1, mitogen-activated protein (MAP) kinases, and S6 kinase (p90rsk) in cultured rat cardiac myocytes. J Cell Physiol 1998;175:239-46. https://doi.org/10.1002/(SICI)1097-4652(199806)175:3<239::AID-JCP1>3.0.CO;2-P
  76. Rovida E, Navari N, Caligiuri A, Dello Sbarba P, Marra F. ERK5 differentially regulates PDGF-induced proliferation and migration of hepatic stellate cells. J Hepatol 2008;48:107-15. https://doi.org/10.1016/j.jhep.2007.08.010
  77. Roberts OL, Holmes K, Muller J, Cross DA, Cross MJ. ERK5 and the regulation of endothelial cell function. Biochem Soc Trans 2009;37(Pt 6):1254-9. https://doi.org/10.1042/BST0371254
  78. Kimura TE, Jin J, Zi M, Prehar S, Liu W, Oceandy D, et al. Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart. Circ Res 2010;106:961-70. https://doi.org/10.1161/CIRCRESAHA.109.209320
  79. Urushihara M, Takamatsu M, Shimizu M, Kondo S, Kinoshita Y, Suga K, et al. ERK5 activation enhances mesangial cell viability and collagen matrix accumulation in rat progressive glomerulonephritis. Am J Physiol Renal Physiol 2010;298:F167-76. https://doi.org/10.1152/ajprenal.00124.2009
  80. Kim S, Lim JH, Woo CH. ERK5 inhibition ameliorates pulmonary fibrosis via regulating Smad3 acetylation. Am J Pathol 2013;183:1758-68. https://doi.org/10.1016/j.ajpath.2013.08.014
  81. Frodin M, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 1999;151:65-77. https://doi.org/10.1016/S0303-7207(99)00061-1
  82. Morales-Ibanez O, Affo S, Rodrigo-Torres D, Blaya D, Millan C, Coll M, et al. Kinase analysis in alcoholic hepatitis identifies p90RSK as a potential mediator of liver fibrogenesis. Gut 2016;65:840-51. https://doi.org/10.1136/gutjnl-2014-307979
  83. Jo E, Park SJ, Choi YS, Jeon WK, Kim BC. Kaempferol suppresses transforming growth factor-${\beta}$1-induced epithelial-to-mesenchymal transition and migration of A549 lung cancer cells by inhibiting akt1-mediated phosphorylation of Smad3 at threonine-179. Neoplasia 2015;17:525-37. https://doi.org/10.1016/j.neo.2015.06.004
  84. Kim S, Han JH, Kim S, Lee H, Kim JR, Lim JH, et al. p90RSK inhibition ameliorates TGF-${\beta}$1 signaling and pulmonary fibrosis by inhibiting Smad3 transcriptional activity. Cell Physiol Biochem 2020;54:195-210. https://doi.org/10.33594/000000214

Cited by

  1. Vitamin D3 alleviates pulmonary fibrosis by regulating the MAPK pathway via targeting PSAT1 expression in vivo and in vitro vol.101, pp.no.pb, 2020, https://doi.org/10.1016/j.intimp.2021.108212