DOI QR코드

DOI QR Code

Estimates of Surface Explosion Energy Based on the Transmission Loss Correction for Infrasound Observations in Regional Distances

인프라사운드 대기 전파 투과손실 보정을 통한 원거리 지표폭발 에너지 추정

  • Che, Il-Young (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Inho (Earthquake Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 제일영 (한국지질자원연구원, 지진연구센터) ;
  • 김인호 (한국지질자원연구원, 지진연구센터)
  • Received : 2020.07.08
  • Accepted : 2020.08.21
  • Published : 2020.10.31

Abstract

This study presents an analysis of infrasonic signals from two accidental explosions in Gwangyang city, Jeonnam Province, Korea, on December 24, 2019, recorded at 12 infrasound stations located 151-435 km away. Infrasound propagation refracted at an altitude of ~40 km owing to higher stratospheric wind in the NNW direction, resulting in favorable detection at stations in that direction. However, tropospheric phases were observed at stations located in the NE and E directions from the explosion site because of the strong west wind jet formed at ~10 km. The transmission losses on the propagation path were calculated using the effective sound velocity structure and parabolic equation modeling. Based on the losses, the observed signal amplitudes were corrected, and overpressures were estimated at the reference distance. From the overpressures, the source energy was evaluated through the overpressure-explosive charge relationship. The two explosions were found to have energies equivalent to 14 and 65 kg TNT, respectively. At the first explosion, a flying fragment forced by an explosive shock wave was observed in the air. The energy causing the flying fragment was estimated to be equivalent to 49 kg or less of TNT, obtained from the relationship between the fragment motion and overpressure. Our infrasound propagation modeling is available to constrain the source energy for remote explosions. To enhance the confidence in energy estimations, further studies are required to reflect the uncertainty of the atmospheric structure models on the estimations and to verify the relationships by various ground truth explosions.

대기 압력 변동을 측정하는 인프라사운드 관측 기술을 통하여 원거리 지표폭발 사고를 분석하였다. 2019년 12월 24일 전남 광양시에서 발생한 2차례 폭발 사고에서 발생한 인프라사운드 신호가 151-435 km 거리에 위치하는 12개 음파 관측소에 기록되었다. 당시 인프라사운드는 북북서 방향의 성층권 바람에 의해 약 40 km 고도에서 굴절되어 같은 방향에 분포하는 관측소에 도달하였다. 반면, 약 10 km 고도에서는 강한 서풍의 영향으로 대류권 굴절 신호가 북동 및 동쪽 방향에 위치하는 관측소에 도달하는 등 방향에 따라 상이한 전파 경로를 보였다. 대기 유효음파속도구조와 포물선 방정식 모델링을 통해 전파 경로상의 투과손실을 계산하고 폭발 지점으로부터 기준거리에서의 초과압력을 추정하였다. 추정된 초과압력은 초과압력-폭발량 관계식에 적용함으로써, 두 차례의 폭발은 각각 14, 65 kg TNT 폭발 에너지에 상응하는 것으로 계산되었다. 1차 폭발 당시에 폭발 충격으로 부속물이 대기 중으로 비산하는 현상이 관측되었고, 폭발충격에 의한 파편 운동과 초과압력 간의 관계식으로 1차 폭발의 에너지는 약 49 kg 이하 TNT 폭발에 상응하는 것으로 계산되었다. 본 연구에서 제안한 폭발 에너지 추정 방법은 향후 다양한 원거리 폭발 에너지 계산에 활용이 가능하리라 본다. 향후 계산 결과의 신뢰도를 높이기 위해서는 대기 속도구조 불확실성에 대한 연구와 다양한 발파 자료를 통한 검증 연구가 필요하다.

Keywords

References

  1. Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J., and Stremlow, R.A., 1983, Explosion hazard and evaluation. Elsevier, Amsterdam.
  2. Brown, D.J., Katz, C.N., Le Bras, R., Flanagan, M.P., Wang, J., and Gault, A.K., 2002, Infrasonic signal detection and source location at the Prototype Data Centre. Pure and Applied Geophysics, 159, 1081-1125. https://doi.org/10.1007/s00024-002-8674-2
  3. Cansi, Y., 1995, An automatic seismic event processing for detection and location: The PMCC method. Geophysical Research Letters, 22, 1021-1024. https://doi.org/10.1029/95GL00468
  4. Che, I.-Y. and Jeon, J.-S., 2006, Geophysical study through infrasound observation. Economic and Environmental Geology, 39(4), 495-505. (in Korean)
  5. Che, I.-Y., Lee, H.-I., Jeon, J.-S., Shin, I.-C., and Chi, H.-C., 2010, State-of-the-art studies on infrasound monitoring in Korea. Jigu-Mulli-wa-Mulli-Tamsa, 13(3). (in Korean)
  6. Che, I.-Y., Le Pichon, A., Kim, K., and Shin, I.-C., 2017, Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula. Geophysical Journal International, 210(2), 1105-1114. https://doi.org/10.1093/gji/ggx222
  7. Christie, D.R. and Campus, P., 2010, The IMS Infrasound network: Design and establishment of infrasound stations. In Le Pichon, A., Blanc, E., and Hauchecorne, A., Infrasound monitoring for atmospheric studies. Springer, 29-75.
  8. Dostal, L., Janovsky, B., and Ferjencik, M., 2012, Velocity and range of fragments from accidental explosions. Process Safety Progress, 31(2), 170-173. https://doi.org/10.1002/prs.11481
  9. Evers, L.G., Ceranna, L., Haak, H.W., Le Pichon, A., and Whitaker, R.W., 2007, A seismoacoustic analysis of the gas-pipeline explosion near Ghislenghien in Belgium. Bulletin of the Seismological Society of America, 97, 417-425. https://doi.org/10.1785/0120060061
  10. Kinney, G. and Graham, K.J., 1985, Explosive shocks in air. Springer Verlag, New York, 1985.
  11. Le Pichon, A., Ceranna, L., and Vergoz, J., 2012, Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. Journal of Geophysical Research, 117, D05121.
  12. Modrak, R.T., Arrowsmith, S.J., and Anderson, D.N., 2010, A Bayesian framework for infrasound location. Geophysical Journal International, 181(1), 399-405. https://doi.org/10.1111/j.1365-246X.2010.04499.x
  13. ReVelle, D.O., Brown, P.G., and Spurny, P., 2004, Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. Meteoritics & Planetary Science, 39, 1605-1626. https://doi.org/10.1111/j.1945-5100.2004.tb00061.x
  14. Virieux, J., Garnier, N., Blanc, E., and Dessa, J.X., 2004, Paraxial ray tracing for atmospheric wave propagation. Geophysical Research Letters, 31, L20106. https://doi.org/10.1029/2004GL020514
  15. Walker, K.T., Le Pichon, A., Kim, T.S., de Groot-Hedlin, C., Che, I.-Y., and Garces, M., 2013, An analysis of ground shaking and transmission loss from infrasound generated by the 2011 Tohoku earthquake, Journal of Geophysical Research: Atmosphere, 118, 12,831-12,851. https://doi.org/10.1002/2013JD020187
  16. Waxler, R., Hetzer, C., and Velea, D., 2015, Atmospheric infrasound propagation package version 1.1 extension and finalization. Nuclear Arms Control Technologies, Final Report.
  17. Whitaker, R.W., Sondoval, T.D., and Mutschlecner, J.P., 2003, Recent infrasound analysis. In Proc. 25th Seismic Res. Rev. - Nuclear Explosion Monitoring: Building the Knowledge Base, pp. 646-654, Tucson, Arizona, USA.