DOI QR코드

DOI QR Code

Nonlinear Tensile Behavior Analysis of Torque-controlled Expansion Anchors Using Finite Element Analysis

유한요소해석을 활용한 비틀림 제어 확장앵커의 비선형 인장거동 특성 분석

  • 방진수 (경북대학교 건설방재공학과) ;
  • 윤일로 (경북대학교 건설방재공학부) ;
  • 권양수 (한국수력원자력(주) 중앙연구원) ;
  • 임홍재 (부산대학교 사회환경시스템공학부)
  • Received : 2020.05.28
  • Accepted : 2020.08.25
  • Published : 2020.08.30

Abstract

Post-installed anchors were widely used due to its workable benefits. Regarding the resistance performance of anchors, the critical edge distance is presented to minimize the impact of concrete splitting. In the case of actual anchors, however, it is difficult to obtain the ideal edge distance. The purpose of this study is to identify resistance performance and behavior characteristics that contain complex elements such as concrete crack occurring under tensile load. Tensile tests were conducted based on the standard method. Failure shape and the resistance characteristics that do not have the critical edge distance were derived by tensile load. Parametric analysis according to the boundary condition was performed to simulate the actual tensile behavior, through a nonlinear finite element model based on the specimen. Consequently therefore, verifying analysis results the resistance mechanism can be applied through boundary conditions.

콘크리트용 앵커볼트는 콘크리트 구조물에 대한 비구조요소의 정착에 주로 사용되고 있으며, 시공성의 이점에 따라 후설치앵커가 주로 사용되고 있다. 앵커의 저항 성능과 관련하여 콘크리트 쪼개짐 영향을 최소화하기 위한 위험 연단거리가 제시되고 있지만 실제 앵커의 경우 이상적인 연단거리를 확보하기 어렵다. 즉, 인장 하중에 따라 발생 가능한 콘크리트 쪼개짐 등 복합적인 요소가 포함된 앵커의 저항 성능과 인장 거동 특성을 파악하기 위함이 본 연구의 목적이다. 표준시험방법을 바탕으로 인장실험을 진행하고 도출된 하중-변위 결과 및 파괴 형상을 분석하였다. 위험 연단거리가 확보되지 않은 앵커의 경우 인장력에 의해 콘크리트 쪼갬 파괴가 동반된 파괴 모드가 도출되고 저항 특성은 강성 구간으로 분류된다. 또한, 실험체 구성 요소를 바탕으로 비선형 유한요소모델을 구성하였으며, 앵커 거동을 모사하기 위해 구속 조건 및 연결요소 조건에 따른 경계조건별 변수 해석을 수행하였다. 이에 따라 도출된 해석 결과는 콘크리트 내부 파괴 영향성 및 실제 앵커의 거동을 바탕으로 검증하여 범용구조해석 프로그램 내 경계조건을 통한 저항 메커니즘 적용이 가능한 것으로 판단된다.

Keywords

References

  1. ACI Committee 318 (2011). Building Code Requirements for Structural Concrete, ACI 318M-11, American Concrete Institute
  2. Kim, S. Y., Yu, C. S., and Yoon, Y. S. (2004). Sleeve-type expansion anchor behavior in cracked and uncracked concrete. Nuclear Engineering and Design, 228(1-3), 273-281. https://doi.org/10.1016/j.nucengdes.2003.06.018
  3. Mahrenholtz, P., and Eligehausen, R. (2015). Post-installed concrete anchors in nuclear power plants: Performance and qualification. Nuclear Engineering and Design, 287, 48-56. https://doi.org/10.1016/j.nucengdes.2015.03.004
  4. Karmazinova, M., Melcher, J., and Kala, Z. (2009). Design of expansion anchors to concrete based on results of experimental verification. Advanced Steel Construction, 5(4), 390-405.
  5. Delhomme, F., Pallud, B., and Rouane, N. (2018). Tightening Torque Influence on Pullout Behavior of Post-installed Expansion Anchors. KSCE Journal of Civil Engineering, 22(10), 3931-3939. https://doi.org/10.1007/s12205-018-0930-9
  6. Kim, J. S., Jung, W. Y., Kwon, M. H., and Ju, B. S. (2013). Performance evaluation of the post-installed anchor for sign structure in South Korea. Construction and Building Materials, 44, 496-506. https://doi.org/10.1016/j.conbuildmat.2013.03.015
  7. Eriksson, D., and Gasch, T. (2011). Load capacity of anchorage to concrete at nuclear facilities, Doctoral dissertation, MSc Thesis: KTH Architecture and the Built Environment, Stockholm, Sweden.
  8. Tsavdaridis, K. D., Shaheen, M. A., Baniotopoulos, C., and Salem, E. (2016, February). Analytical approach of anchor rod stiffness and steel base plate calculation under tension. In Structures (Vol. 5, pp. 207-218). Elsevier. https://doi.org/10.1016/j.istruc.2015.11.001
  9. Gontarz, J., and Podgorski, J. (2019). Analysis of crack propagation in a "pull-out" test. Studia Geotechnica et Mechanica.
  10. Chen, Z., Nassiri, S., Lamanna, A., and Cofer, W. (2020). Investigation of Pull-Through and Pullout Failure Modes of Torque-Controlled Expansion Anchors. ACI Structural Journal, 117(1).
  11. ASTM E488/E488M-18 (2018). Standard Test Methods for Strength of Anchors in Concrete Elements
  12. Hilti (2019). Anchor Fastening Technical Guide Edition 19, https://www.hilti.com/medias/sys_master/documents/hd8/h29/9 484912361502/Technical-information-ASSET-DOC-LOC-1543421.pdf
  13. ABAQUS (2020). Abaqus Analysis user's Guide 6.20, Dassault Systems Simulia Cop., Providenve, RI, USA
  14. Eligehausen, R., Mallée, R., and Silva, J. F. (2006). Anchorage in concrete construction (Vol. 10). John Wiley & Sons.
  15. ACI Committee 355 (2007). Qualification of Post-Installed Mechanical Anchors in Concrete and Commentary, ACI 355.2-07, American Concrete Institute
  16. Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989). A plastic-damage model for concrete. Int. J. Solids and Structures.
  17. Kent DC, and Park R. (1971). Flexural members with confined concrete. J. Struct. Div. 1971; 97(7): 1969-1990. https://doi.org/10.1061/JSDEAG.0002957
  18. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. B., and Karimzade, K. (2017). Simplified damage plasticity model for concrete. Structural Engineering International, 27(1), 68-78. https://doi.org/10.2749/101686616X1081
  19. Ormeno, M., Geddes, M., Larkin, T., and Chouw, N. (2015). Experimental study of slip-friction connectors for controlling the maximum seismic demand on a liquid storage tank. Engineering Structures, 103, 134-146. https://doi.org/10.1016/j.engstruct.2015.09.005
  20. Mohamed, K., Rashed, G., and Radakovic-Guzina, Z. (2020). Loading characteristics of mechanical rib bolts determined through testing and numerical modeling. International Journal of Mining Science and Technology.

Cited by

  1. 슬리브 및 헤드 길이에 따른 후설치 앵커의 인발성능평가 vol.25, pp.2, 2021, https://doi.org/10.11112/jksmi.2021.25.2.8