DOI QR코드

DOI QR Code

Toxic effects of phenanthrene on fertilization and normal embryogenesis rates of Mesocentrotus nudus and Hemicentrotus pulcherrimus

둥근성게(Mesocentrotus nudus)와 말똥성게(Hemicentrotus pulcherrimus)의 수정 및 정상 배아발생률을 이용한 Phenanthrene의 독성영향

  • Choi, Hoon (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Lee, Ju-Wook (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Park, Yun-Ho (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Lee, Seung-Min (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Choi, Yoon-Seok (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Heo, Seung (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Hwang, Un-Ki (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
  • 최훈 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이주욱 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 박윤호 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이승민 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 최윤석 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 허승 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2020.06.09
  • Accepted : 2020.07.20
  • Published : 2020.09.30

Abstract

The aim of this study was to define the toxic effects of phenanthrene (PAHs) on the fertilization and normal embryogenesis rates in the two species of sea urchin (Hemicentrotus pulcherrimus and Mesocentrotus nudus). The sperm and fertilized eggs of both sea urchin species were exposed to serial dilutions of phenanthrene for 10 min and 48 hours, respectively. The fertilization rate and normal embryogenesis rate of H. pulcherrimus and M. nudus were decreased in a concentration-dependent manner. The EC50 for the fertilization rate of H. pulcherrimus and M. nudus was 17.48 mg L-1 and 16.21 mg L-1, and the EC50 for the normal embryogenesis rate was 2.99 mg L-1 and 0.36 mg L-1, respectively. Between the two species, H. pulcherrimus was more sensitive to phenanthrene exposure, and 48 h normal embryogenesis was the more sensitive endpoint. Therefore, the results of this study demonstrated that the exposure of both sea urchin species to phenanthrene caused alterations in egg fertilization and the early developmental stages.

본 연구에서는 다환방향족탄화수소(PAHs) 중, phenanthrene이 둥근성게(Mesocentrotus nudus)와 말똥성게(Hemicentrotus pulcherrimus)의 수정률과 정상유생 발생률에 미치는 독성 효과를 확인하고자 하였다. H. pulcherrimus와 M. nudus의 모체에서 각각 획득한 정자와, 인공수정을 통하여 획득된 수정란을 phenanthrene에 노출시킨 후, 수정률과 정상배아 발생률을 측정하였다. 시험결과, H. pulcherrimus와 M. nudus의 수정률과 정상배아 발생률은, 농도 의존적으로 감소하였으며, H. pulcherrimus와 M. nudus의 수정률에 대한 EC50값은 17.48 mg L-1과 16.21 mg L-1이었고, 정상배아 발생률의 EC50값은 각각 2.99mgL-1과 0.36mgL-1인 것으로 나타났다. 연구결과, H. pulcherrimus는 M. nudus보다 phenanthrene 노출에 대하여 더 민감하게 반응하는 것으로 나타났으며, 정상배아 발생률은 수정률에 비하여 더 민감한 종말점인 것으로 나타났다. 따라서, phenanthrene은 두 종의 성게 정자의 수정과 초기발달 단계를 포함한, 연안에 서식하는 다양한 생물종에 영향을 미치는 것으로 보여진다. 그중, 두 종의 성게는 다른 연안 서식 생물 종들에 비하여, Phenanthrene의 bio-monitoring을 위한 민감한 생물종일 수 있다고 사료된다. 또한, 본 연구를 통하여 도출된 결과와 독성값(NOEC, LOEC 및 EC50)은 Phenanthrene을 포함한 PAHs의 환경 기준농도 설정을 위한 유용한 기초 자료로 활용될 수 있다.

Keywords

References

  1. Baek SO, RA Field, ME Goldstone, PW Kirk, JN Lester and R Perry. 1991. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate, and behavior. Water Air Soil Pollut. 60:279-300. https://doi.org/10.1007/BF00282628
  2. Bartlett JHG, DM Mageean and RJ O'Conner. 2000. Residential expansion as a continental threat to U.S. coastal ecosystem. Popul. Environ. 21:429-468. https://doi.org/10.1007/BF02436749
  3. Botello AV, SF Villanueva, GG Diaz and E Escobar-Briones. 1998. Polycyclic aromatic hydrocarbons in sediments from Salina Cruz Harbor and coastal areas, Oaxaca, Mexico. Mar. Pollut. Bull. 36:554-558. https://doi.org/10.1016/S0025-326X(98)00026-5
  4. Budzinski H, L Jones, J Bellocq, C Pierard and P Garrigues. 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 58:85-97. https://doi.org/10.1016/S0304-4203(97)00028-5
  5. Cachot J, O Geffard, S Augagneur, S Lacroix, K Le-Menach, L Peluhet, J Couteau, X Denier, MG Devier, D Pottier and H Budzinsk. 2006. Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat. Toxcol. 79:257-267. https://doi.org/10.1016/j.aquatox.2006.06.014
  6. Castro-Jimenez J, N Berrojalbiz, J Wollgast and J Dachs. 2012. Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: Atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ. Pollut. 166:40-47. https://doi.org/10.1016/j.envpol.2012.03.003
  7. Chen CW and CF Chen. 2011. Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Mar. Pollut. Bull. 63:417-423. https://doi.org/10.1016/j.marpolbul.2011.04.047
  8. Chung HH, HS Jeong, EY Kim, HI Cho, JC Hwang and SW Choi. 2004. Polycyclic aromatic hydrocarbons in the sediments of Kwangyang Bay on Korea. J. Environ. Sci. Int. 13:543-549. https://doi.org/10.5322/JES.2004.13.6.543
  9. Di Toro D, J McGrath and D Hansen. 2000. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environ. Toxicol. Chem. 19:1951-1970. https://doi.org/10.1002/etc.5620190803
  10. Greenwood PJ. The influence of an oil dispersant chemserve OSE-DH on the viability of sea urchin gametes. Combined effects of temperature, concentration and exposure time on fertilization. Aquat. Toxicol. 4:15-29. https://doi.org/10.1016/0166-445X(83)90058-9
  11. Haritash AK and CP Kaushik. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169:1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137
  12. Honda M and N Suzuki. 2020. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 17:1-23.
  13. Hwang UK, CW Lee, SM Lee, KH An and SY Park. 2008. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the Sea Urchin (Strongylocentrotus nudus). J. Environ. Sci. 17:775-781. https://doi.org/10.3321/j.issn:1001-0742.2005.05.014
  14. Hwang UK, CW Rhee, KS Kim, KH An and SY Park. 2009. Effects of salinity and standard toxic metal (Cu, Cd) on fertilization and embryo development rates in the Sea Urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 24:9-16.
  15. Hwang UK, HM Ryu, YH Choi, SM Lee and HS Kang. 2011. Effect of cobalt (II) on the fertilization and embryo development of the Sea Urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 29:251-257.
  16. Hwang UK, DH Kim, HM Ryu, JW Lee, SY Park and HS Kang. 2014. Effect of bisphenol A on early embryonic development and the expression of Glutathione S-transferase (GST) in the Sea Urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 32:234-242. https://doi.org/10.11626/KJEB.2014.32.3.234
  17. Jackim E and D Nacci. 1986. Improved sea urchin DNA-based embryo growth toxicity test. Environ. Toxicol. Chem. 5:561-565. https://doi.org/10.1002/etc.5620050608
  18. Johnsen AR, LY Wick and H Harms. 2005. Principles of microbial PAH-degradation in soil. Environ. Pollut. 133:71-84. https://doi.org/10.1016/j.envpol.2004.04.015
  19. Kanaly RA and S Harayama. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182:2059-2067. https://doi.org/10.1128/JB.182.8.2059-2067.2000
  20. Kanaki M, A Nikolaou, CA Makri and DF Lekkas. 2007. The occurrence of priority PAHs, nonylphenol and octylphenol in inland and coastal waters of Central Greece and the Island of Lesvos. Desalination 210:16-23. https://doi.org/10.1016/j.desal.2006.05.028
  21. Kobayashi N. 1991. Marine pollution bioassay by using sea urchin eggs in the Tanabe Bay, Wakayama Prefecture, Japan, 1970-1987. Mar. Pollut. Bull. 23:709-713. https://doi.org/10.1016/0025-326X(91)90765-K
  22. Latimer JS and J Zheng. 2003. The sources, transport and fate of PAHs in the marine environment. pp. 9-33. In: PAHs: An Ecotoxicological Perspective (Douben PET eds.). John Wiley and Sons Incorporated, New York.
  23. Lim L, O Wurl, S Karuppiah and JP Obbard. 2007. Atmospheric wet deposition of PAHs to the sea-surface microlayer. Mar. Pollut. Bull. 54:1212-1219. https://doi.org/10.1016/j.marpolbul.2007.03.023
  24. Lee TY. 2018. Concentration, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments obtained from near Gwangan Bridge. J. Korean Soc. Environ. Eng. 40:379-384. https://doi.org/10.4491/KSEE.2018.40.10.379
  25. Manzo S, S Buono and C Cremisini. 2006. Toxic effects of Irgarol and Diuron on seaurchin Paracentrotus lividus Early Development, fertilization, and offspring quality. Arch. Environ. Contam. Toxicol. 51:61-68. https://doi.org/10.1007/s00244-004-0167-0
  26. Moon HB, SK Kang, HS Kim, MK Choi, J Yu, HG Choi and JS Park. 2007. Polycyclic Aromatic Hydrocarbons (PAHs) in seawater and marine sediments from Mokpo coast in Korea. J. Kor. Soc. Environ. Anal. 10:83-90.
  27. Nikolaou K, P Masclet and G Mouvier. 1984. Sources and chemical-reactivity of polynuclear aromatic hydrocarbons in the atmosphere-A critical-review. Sci. Total Environ. 32:103-132. https://doi.org/10.1016/0048-9697(84)90125-6
  28. Pagano G, G Corsale, A Esposito, PA Dinnel and LA Romana. 1989. Use of sea urchin sperm and embryo bioassay in testing the sublethal toxicity of realistic pollutant level. Adv. Appl. Biotech. Ser. 5:153-163.
  29. Park PS, NS Kim, UH Yim, WJ Shim and GB Kim. 2009. Spatial and vertical distribution of polycyclic aromatic hydrocarbons in sediment of the shipyard area in Gohyeon Bay. J. Korean Soc. Mar. Environ. Energy 12:68-74.
  30. Qiu YW, G Zhang, GQ Liu, LL Guo, XD Li and O Wai. 2009. Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuar. Coast. Shelf Sci. 83:60-66. https://doi.org/10.1016/j.ecss.2009.03.018
  31. Serafim A, R Company, B Lopes, C Pereira, A Cravo, VF Fonseca, S Franca, MJ Bevianno and HN Cabral. 2013. Evaluation of sediment toxicity in different Portuguese estuaries: Ecological impact of metals and polycyclic aromatic hydrocarbons. Estuar. Coast. Shelf Sci.130:30-41. https://doi.org/10.1016/j.ecss.2013.04.018
  32. Sung CG, PS Park, JH Lee and CH Lee. 2014. Effect of five PAHs (2-methylnaphthalene, fluorene, dibenzothiophene, phenanthrene, and pyrene) on the embryonic development in the mussel, Mytilus galloprovincialis. Korean J. Malacol. 30:177-187. https://doi.org/10.9710/kjm.2014.30.3.177
  33. UNEP. 2003. Proceedings of workshop to develop a global POPs monitoring programme to support the effectiveness evaluation of the Stockholm Convention. United Nations Environment Program. Nairobi, Kenya.
  34. Veith GD, DJ Call and L Brooke. 1983. Structure-toxicity relationships for the fathead minnow, Pimephales promelas: narcotic industrial chemicals. Can. J. Fish. Aquat. Sci. 40:743-748. https://doi.org/10.1139/f83-096
  35. Wu Y, J Zhang and ZJ Zhu. 2003. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China. Mar. Pollut. Bull. 46:619-625. https://doi.org/10.1016/S0025-326X(03)00035-3
  36. Yu CM. 1998. A study on the effect of heavy metals on embryos formation of sea urchins. Kor. J. Env. Hlth. Soc. 24:6-10.
  37. You YS, JH Lee, JC Park, DM Kim and HS Cho. 2012. Distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in riverine waters of Ulsan Coast, Korea. J. Korean Soc. Mar. Environ. Saf. 18:398-405. https://doi.org/10.7837/kosomes.2012.18.5.398