DOI QR코드

DOI QR Code

Growth responses of kelp species Ecklonia cava to different temperatures and nitrogen sources

온도와 질소원 종류에 따른 대형갈조류 감태(Ecklonia cava)의 생장

  • Choi, Sun Kyeong (Estuarine and Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University) ;
  • Kang, Yun Hee (Department of Earth and Marine Sciences, Jeju National University) ;
  • Park, Sang Rul (Estuarine and Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University)
  • 최선경 (제주대학교 해양생명과학과 하구 및 연안생태학 연구실) ;
  • 강윤희 (제주대학교 지구해양과학과) ;
  • 박상률 (제주대학교 해양생명과학과 하구 및 연안생태학 연구실)
  • Received : 2020.05.25
  • Accepted : 2020.08.31
  • Published : 2020.09.30

Abstract

We investigated the seasonal variations in growth and physiological responses of the kelp species Ecklonia cava to different nitrogen sources to establish indoor culture conditions for mass production. Ecklonia cava was cultivated for 10 days in 16 combinations of seawater temperatures (15, 17, 21, and 25℃) and different nitrogen sources (control; NH-NH4+ 100 μM; NO-NO3- 100 μM; and NHNO-NH4+ 50 μM+NO3- 50 μM). The growth and growth rate of the blade were affected by temperature. The mean fresh weight and area-based daily growth rate were the highest (5.8±0.5 and 6.6±0.5% day-1, respectively) at 15℃ and the lowest (2.2±0.2 and 3.0±0.3% day-1, respectively) at 25℃. The daily growth rate was the highest in the NH and NO treatments and lowest in the control. The nitrate reductase activity of E. cava varied with water temperature (season). The highest activity was in the control (1.32±0.10 μmol NO2- g-1 dry weight h-1) and the lowest was in the NH treatment (0.25±0.02 μmol NO2- g-1 dry weight h-1). The photosynthetic pigment concentrations reached a maximum value in the NHNO treatment and a minimum value in the control. These results showed that water temperature played an important role in the cultivation of E. cava and that a single supply of NH4+ or NO3- may induce the accelerated growth of E. cava. The growth and physiological responses of E. cava to different nitrogen sources during each season provide valuable information for determining the optimal nitrogen source in E. cava cultivation under indoor conditions.

감태(Ecklonia cava)는 다년생 대형갈조류로써 활용성이 매우 높은 것으로 알려졌다. 이 연구는 감태의 대량 생산을 위한 실내 배양 조건 확립을 위해서 계절과 질소원 종류에 따른 감태 포자체의 생장과 생화학적 반응을 조사하였다. 제주도 서귀포 해역에 생육하는 감태를 계절별로 채집하여 계절별 수온조건(봄 17℃, 여름 25℃, 가을 21℃와 겨울 15℃)과 4가지 영양염 조건[대조구(control), 100 μM NH4+를 넣은 실험구(NH), 100 μM NO3-를 추가한 실험구(NO), 50 μM NH4+와 50 μM NO3-를 함께 넣은 실험구(NHNO)]에서 배양하여 엽체의 생체량과 면적 변화에 따른 생장률, 질산환원효소 활성도와 광합성 색소 함량을 조사하였다. 감태의 생장은 뚜렷한 계절 변화를 나타냈고, 무게와 면적과의 상관성은 계절별로 차이를 보였다. 무게와 면적의 일일생장률은 겨울에 최고 값(5.8±0.5와 6.6±0.5% day-1)을 보였고, 여름에 최저 값(2.2±0.2와 3.0±0.3% day-1)을 나타냈다. 엽체의 일일생장률은 NH와 NO 실험구에서 가장 높았으며 NHNO 실험구에서 중간 값 그리고 대조구에서 가장 낮은 값을 보였다. 감태의 질산환원 효소 활성도는 계절적으로 유의한 차이를 나타났으며, 대조구에서 가장 높고(1.32±0.10 μmol NO2- g-1 dry weight h-1), NH 실험구에서 가장 낮았다(0.25±0.02 μmol NO2- g-1 dry weight h-1). 엽체 내 광합성 색소의 함량은 대조구에서 가장 낮고 NHNO 실험구에서 가장 높았다. 본 연구결과는 감태 배양을 위한 배양액을 제작 시, 단일 종류의 질소원으로 제작하는 것이 생장률을 향상시킨다는 것을 보여주었으며, 실내배양에 따른 최적 질소원 종류를 결정하는 데 중요한 기초자료를 제공할 것이다.

Keywords

References

  1. Abreu MH, R Pereira, AH Buschmann, I Sousa-Pinto and C Yarish. 2011. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J. Exp. Mar. Biol. Ecol. 407:190-199. https://doi.org/10.1016/j.jembe.2011.06.034
  2. Ahn O, RJ Petrell and PJ Harrison. 1998. Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm. J. Appl. Phycol. 10:333-340. https://doi.org/10.1023/A:1008092521651
  3. Ashkenazi DY, A Israel and A Abelson. 2019. A novel two-stage seaweed integrated multi-trophic aquaculture. Rev. Aquac. 11:246-262. https://doi.org/10.1111/raq.12238
  4. Berges JA. 1997. Miniview: algal nitrate reductases. Eur. J. Phycol. 32:3-8. https://doi.org/10.1080/09541449710001719315
  5. Besada V, JM Andrade, F Schultze and JJ Gonzalez. 2009. Heavy metals in edible seaweeds commercialised for human consumption. J. Mar. Syst. 75:305-313. https://doi.org/10.1016/j.jmarsys.2008.10.010
  6. Bryan GW and LG Hummerstone. 1973. Brown seaweed as an indicator of heavy metals in estuaries in south-west England. J. Mar. Biol. Assoc. U.K. 53:705-720. https://doi.org/10.1017/S0025315400058902
  7. Brzezinski MA, DC Reed, S Harrer, A Rassweiler, JM Melack, BM Goodridge and JE Dugan. 2013. Multiple sources and forms of nitrogen sustain year-round kelp growth: on the inner continental shelf of the Santa Barbara channel. Oceanography 26:114-123. https://doi.org/10.5670/oceanog.2013.53
  8. Buschmann AH, D Varela, M Cifuentes, M del Carmen Hernandez-Gonzalez, L Henriquez, R Westermeier and JA Correa. 2004. Experimental indoor cultivation of the carrageenophytic red alga Gigartina skottsbergii. Aquaculture 241:357-370. https://doi.org/10.1016/j.aquaculture.2004.08.026
  9. Cabello-Pasini A, V Macias-Carranza, R Abdala, N Korbee and FL Figueroa. 2011. Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida (Chlorophyta). J. Appl. Phycol. 23:363-369. https://doi.org/10.1007/s10811-010-9548-0
  10. Chapman ARO, JW Markham and K Luning. 1978. Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture. J. Phycol. 14:195-198. https://doi.org/10.1111/j.1529-8817.1978.tb02448.x
  11. Choa JH and JB Lee. 2000. Bioecological characteristics of coral habitats around Moonsom, Cheju Island, Korea I. Environment properties and community structures of phytoplankton. J. Korean Soc. Oceanogr. 5:59-69.
  12. Chow F and MC de Oliveira. 2008. Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta): influence of different nitrogen sources. J. Appl. Phycol. 20:775-782. https://doi.org/10.1007/s10811-008-9310-z
  13. Corzo A and FX Niell. 1991. Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method. J. Exp. Mar. Biol. Ecol. 146:181-191. https://doi.org/10.1016/0022-0981(91)90024-Q
  14. Dawes CJ, J Orduna-Rojas and D Robledo. 1999. Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J. Appl. Phycol. 10:419. https://doi.org/10.1023/A:1008021613399
  15. Dean PR and CL Hurd. 2007. Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in southern New Zealand 1. J. Phycol. 43:1138-1148. https://doi.org/10.1111/j.1529-8817.2007.00416.x
  16. Duncan MJ and PJ Harrison. 1982. Comparison of solvents for extracting chlorophylls from marine macrophytes. Bot. Mar. 25:445-448.
  17. Fairhead VA and AC Cheshire. 2004. Seasonal and depth related variation in the photosynthesis-irradiance response of Ecklonia radiata (Phaeophyta, Laminariales) at West Island, South Australia. Mar. Biol. 145:415-426. https://doi.org/10.1007/s00227-004-1330-x
  18. Gal-Or S and A Israel. 2004. Growth responses of Pterocladiella capillacea (Rhodophyta) in laboratory and outdoor cultivation. J. Appl. Phycol. 16:195-202. https://doi.org/10.1023/B:JAPH.0000048505.13667.bf
  19. Gao X, H Endo, K Taniguchi and Y Agatsuma. 2013. Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. J. Appl. Phycol. 25:269-275. https://doi.org/10.1007/s10811-012-9861-x
  20. Gao X, H Endo, M Nagaki and Y Agatsuma. 2016. Growth and survival of juvenile sporophytes of the kelp Ecklonia cava in response to different nitrogen and temperature regimes. Fish. Sci. 82:623-629. https://doi.org/10.1007/s12562-016-0998-4
  21. Gordillo FJL. 2012. Environment and algal nutrition. pp. 67-86. In: Seaweed Biology (Wiencke C and K Bischof eds.). Springer, Verlag Berlin Heidelberg.
  22. Haroun R, Y Yokohama and Y Aruga. 1989. Annual growth cycle of the brown alga Ecklonia cava in central Japan. Sci. Mar. 53:349-356.
  23. Harrison PJ and CL Hurd. 2001. Nutrient physiology of seaweeds: application of concepts to aquaculture. Cah. Biol. Mar. 42:71-82.
  24. Heo SJ, SC Ko, SH Cha, DH Kang, HS Park, YU Choi, D Kim, WK Jung and YJ Jeon. 2009. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. In Vitro 23:1123-1130. https://doi.org/10.1016/j.tiv.2009.05.013
  25. Hiraoka M and N Oka. 2008. Tank cultivation of Ulva prolifera in deep seawater using a new "germling cluster" method. J. Appl. Phycol. 20:97-102. https://doi.org/10.1007/s10811-007-9186-3
  26. Hong CH and JH Choa. 2008. An experimental study on development of artificial reefs using volcanic stones for marine forests. J. Ocean Eng. Technol. 22:103-108.
  27. Hwang EK, YG Gong, IK Hwang, EJ Park and CS Park. 2013a. Cultivation of the two perennial brown algae Ecklonia cava and E. stolonifera for abalone feeds in Korea. J. Appl. Phycol. 25:825-829. https://doi.org/10.1007/s10811-012-9941-y
  28. Hwang EK, IK Hwang, EJ Park, YG Gong and CS Park. 2013b. Cultivation technique of Ecklonia cava Kjellman for restoration of natural resources. Korean J. Environ. Biol. 31:347-352. https://doi.org/10.11626/KJEB.2013.31.4.347
  29. Hwang JR, YH Kang, JH Oak, SR Lee and IK Chung. 2011. Effects of nitrogen form and light conditions on the nitrate reductase activity of Ulva pertusa (Chlorophyta) and Ecklonia cava (Phaeophyta). Korean J. Fish. Aquat. Sci. 44:64-70. https://doi.org/10.5657/kfas.2011.44.1.064
  30. Kain JM. 1989. The seasons in the subtidal. Eur. J. Phycol. 24:203-215. https://doi.org/10.1080/00071618900650221
  31. Kaladharan P. 2000. Artificial seawater for seaweed culture. Indian J. Fish. 47:257-260.
  32. Kang JW. 1966. On the geographical distribution of marine algae in Korea. Bull. Pusan Fish. Coll. 7:1-125.
  33. Kang SK. 2011. Economic analysis of the seaweed forest creation project: the case of Jeju Woodo Seokwang-ri. J. Fish. Bus. Admin. 42:37-55.
  34. Kang YH, SR Park and IK Chung. 2011. Biofiltration efficiency and biochemical composition of three seaweed species cultivated in a fish-seaweed integrated culture. Algae 26:97-108.
  35. Kang YH, S Kim, SK Choi, HJ Lee, IK Chung and SR Park. 2020. A comparison of the bioremediation potential of five seaweed species in an integrated fish -seaweed aquaculture system: implication for a multi -species seaweed culture. Rev. Aquac. https://doi.org/10.1111/raq.12478
  36. Kim S, YH Kang, TH Kim and SR Park. 2016. Recovery pattern and seasonal dynamics of kelp species, Ecklonia cava population formed following the large-scale disturbance. J. Korean Soc. Oceanogr. 21:103-111.
  37. Kim S, SH Youn, HJ Oh, SK Choi, YH Kang, TH Kim, HJ Lee, KS Choi and SR Park. 2018. Stipe length as an indicator of reproductive maturity in the kelp Ecklonia cava. Ocean Sci. J. 53:595-600. https://doi.org/10.1007/s12601-018-0022-2
  38. Kim YD, JP Hong, HI Song, MS Park, TS Moon and HI Yoo. 2012. Studies on technology for seaweed forest construction and transplanted Ecklonia cava growth for an artificial seaweed reef. J. Environ. Biol. 33:969.
  39. Kim YK, JY Lee, IS Kwak and JK Kim. 2020. Diffusion characteristics of Ecklonia cava spores around marine forest reefs. J. Korean Soc. Mar. Environ. Saf. 26:93-102. https://doi.org/10.7837/kosomes.2020.26.1.093
  40. Ko JC, JH Koo and MH Yang. 2008. Characteristics of ocean environmental factors and community structure of macrobenthos around Munseom, Jeju Island, Korea. Korean J. Malacol. 24:215-228.
  41. Koirala P, HA Jung and JS Choi. 2017. Recent advances in pharmacological research on Ecklonia species: a review. Arch. Pharm. Res. 40:981-1005. https://doi.org/10.1007/s12272-017-0948-4
  42. Korb RE and VA Gerard. 2000. Nitrogen assimilation characteristics of polar seaweeds from differing nutrient environments. Mar. Ecol. Prog. Ser. 198:83-92. https://doi.org/10.3354/meps198083
  43. Lee W, G Ahn, JY Oh, SM Kim, N Kang, EA Kim, KN Kim, JB Jeong and YJ Jeon. 2016. A prebiotic effect of Ecklonia cava on the growth and mortality of olive flounder infected with pathogenic bacteria. Fish Shellfish Immunol. 51:313-320. https://doi.org/10.1016/j.fsi.2016.02.030
  44. Lee Y and SY Kang. 2001. A catalogue of the seaweeds in Korea. Publishing Department of Cheju National University. Jeju, Korea.
  45. Levy I and E Gantt. 1990. Development of photosynthetic activity in Porphyridium purpureum (rhodophyta) following nitrogen starvation. J. Phycol. 26:62-68. https://doi.org/10.1111/j.0022-3646.1990.00062.x
  46. Li JY, Y Murauchi, M Ichinomiya, Y Agatsuma and K Taniguchi. 2007. Seasonal changes in photosynthesis and nutrient uptake in Laminaria japonica (Laminariaceae; Phaeophyta). Aquacult. Sci. 55:587-597.
  47. Li YX and SK Kim. 2011. Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: An overview. Food Sci. Biotechnol. 20:1461-1466. https://doi.org/10.1007/s10068-011-0202-7
  48. Lobban CS and PJ Harrison. 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge.
  49. Luning K. 1993. Environmental and internal control of seasonal growth in seaweeds. Hydrobiologia 260/261:1-14. https://doi.org/10.1007/BF00048997
  50. Miller SM. 2003. Ecophysiology of Ecklonia radiata (Alariaceae: Laminariales) in Doubtful Sound, Fiordland. University of Otago. Dunedin, New Zealand.
  51. Mizuta H and Y Maita. 1991. Effects of nitrate supply on ammonium assimilations in the blade of Laminaria japonica (Phaeophyceae). Bull. Fac. Fish., Hokkaido Univ. 42:107-114.
  52. Navarro -Angulo L and D Robledo. 1999. Effects of nitrogen source, N: P ratio and N-pulse concentration and frequency on the growth of Gracilaria cornea (Gracilariales, Rhodophyta) in culture. Hydrobiologia 398:315-320. https://doi.org/10.1023/A:1017099321188
  53. Neori A, MD Krom, SP Ellner, CE Boyd, D Popper, R Rabinovitch, PJ Davison, O Dvir, D Zuber and M Ucko. 1996. Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141:183-199. https://doi.org/10.1016/0044-8486(95)01223-0
  54. Ohno M. 1985. Marine forest-its ecology and constructing technology. Kaiyo Kagaku 17:706-713.
  55. Park JK and JH Park. 2013. Estimation of solar radiation distribution considering the topographic conditions at Jeju island. J. Korean Soc. Agric. Eng. 55:39-48. https://doi.org/10.5389/KSAE.2013.55.1.039
  56. Phillips JC and CL Hurd. 2003. Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilisation in relation to shore position and season. Mar. Ecol. Prog. Ser. 264:31-48. https://doi.org/10.3354/meps264031
  57. Pritchard DW, CL Hurd, J Beardall and CD Hepburn. 2015. Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a light-limited red alga. J. Phycol. 51:277-287. https://doi.org/10.1111/jpy.12272
  58. Rees TAV. 2003. Safety factors and nutrient uptake by seaweeds. Mar. Ecol. Prog. Ser. 263:29-42. https://doi.org/10.3354/meps263029
  59. Sahoo D, M Ohno and M Hiraoka. 2002. Laboratory, field and deep seawater culture of Eucheuma serra -a high Lectin yielding red alga. Algae 17:127-133. https://doi.org/10.4490/ALGAE.2002.17.2.127
  60. Schiewer S and MH Wong. 1999. Metal binding stoichiometry and isotherm choice in biosorption. Environ. Sci. Technol. 33:3821-3828. https://doi.org/10.1021/es981288j
  61. Seely GR, MJ Duncan and WE Vidaver. 1972. Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Mar. Biol. 12:184-188. https://doi.org/10.1007/BF00350754
  62. Serisawa Y, Y Yokohama, Y Aruga and J Tanaka. 2001. Photosynthesis and respiration in bladelets of Ecklonia cava Kjellman (Laminariales, Phaeophyta) in two localities with different temperature conditions. Phycol. Res. 49:1-11. https://doi.org/10.1111/j.1440-1835.2001.tb00227.x
  63. Serisawa Y, M Aoki, T Hirata, A Bellgrove, A Kurashima, Y Tsuchiya, T Sato, H Ueda and Y Yokohama. 2003. Growth and survival rates of large -type sporophytes of Ecklonia cava transplanted to a growth environment with small-type sporophytes. J. Appl. Phycol. 15:311-318. https://doi.org/10.1023/A:1025183100958
  64. Shibata T, K Ishimaru, S Kawaguchi, H Yoshikawa and Y Hama. 2007. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J. Appl. Phycol. 20:705-711. https://doi.org/10.1007/s10811-007-9254-8
  65. Stewart JG. 1984. Vegetative growth rates of Pterocladia capillacea (Gelidiaceae, Rhodophyta). Bot. Mar. 27:85-92. https://doi.org/10.1515/botm.1984.27.2.85
  66. Teichberg M, LR Heffner, S Fox and I Valiela. 2007. Nitrate reductase and glutamine synthetase activity, internal N pools, and growth of Ulva lactuca: responses to long and short-term N supply. Mar. Biol. 151:1249-1259. https://doi.org/10.1007/s00227-006-0561-4
  67. Tominaga H, Y Serisawa and M Ohno. 2004. Seasonal changes in net production of the bladelets and size of the proximal blade of Ecklonia cava in Tosa Bay, Kochi Prefecture. Jpn. J. Phycol. 52:13-19.
  68. Turpin DH. 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol. 27:14-20. https://doi.org/10.1111/j.0022-3646.1991.00014.x
  69. Weidner M and H Kiefer. 1981. Nitrate reduction in the marine brown alga Giffordia mitchellae (Harv.) Ham. Z. Pjlanzenphysiol. Bd. 104:341-351. https://doi.org/10.1016/S0044-328X(81)80073-6
  70. Wi MY, EK Hwang, SC Kim, MS Hwang, JM Baek and CS Park. 2008. Regeneration and maturation induction for the free-living gametophytes of Ecklonia cava Kjellman (Laminariales, Phaeophyta). Korean J. Fish. Aquat. Sci. 41:381-388. https://doi.org/10.5657/kfas.2008.41.5.381
  71. Wiencke C and K Bischof. 2012. Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, Berlin.
  72. Wijesekara I, NY Yoon and SK Kim. 2010. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors 36:408-414. https://doi.org/10.1002/biof.114
  73. Wijesinghe WAJP and YJ Jeon. 2012. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review. Int. J. Food Sci. Nutr. 63:225-235. https://doi.org/10.3109/09637486.2011.619965
  74. Yokohama Y, J Tanaka and M Chihara. 1987. Productivity of the Ecklonia cava community in a bay of Izu Peninsula on the Pacific Coast of Japan. Bot. Mag. Tokyo 100:129-141. https://doi.org/10.1007/BF02488318
  75. Yong YS, WTL Yong and A Anton. 2013. Analysis of formulae for determination of seaweed growth rate. J. Appl. Phycol. 25:1831-1834. https://doi.org/10.1007/s10811-013-0022-7
  76. Yoshida T, K Yoshinaga and Y Nakajima. 2000. Check list of marine algae of Japan (revised in 2000). Jpn. J. Phycol. 48:113-166.
  77. Young EB, JA Berges and MJ Dring. 2009. Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium. Physiol. Plant. 135:400-411. https://doi.org/10.1111/j.1399-3054.2008.01199.x
  78. Zimmerman RC and JN Kremer. 1984. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res. 42:591-604. https://doi.org/10.1357/002224084788506031