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1. Introduction

Due to the mismatch between constituent 

materials and the optimized arrangement of 

geometric properties, sandwich structures have 

demonstrated excellent multifunctionality for use as 

high-strength and low-weight structures, superior 

noise- and energy-absorption structures, and 

high-temperature-resistant structures[1]. Since these 

have rapidly increased in popularity in various 

engineering applications, the theoretical and 

numerical development of accurate and generalized 

models for predicting and controlling their 

mechanical characteristics has received consistent 

attention in the last several decades. In particular, 

according to the existing literature[2], numerous 

studies have done using Classical Beam Theory 

(CBT) without employing transverse shear 

deformations or the First-Order Shear Deformation 
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Theory (FOSDT) with transverse shear effects to 

correct CBT. However, their accuracy and 

generalization to the analysis of sandwich beam 

problems are limited, and thus, researchers are 

reluctant to accept them with confidence[3,4]. 

Therefore, generalized and accurate yet simple and 

efficient approaches of analysis are still required.

In this paper, to investigate the planar 

deformations of the isotropic sandwich beam, the 

universal theory based on the zeroth-order 

Timoshenko beam model is systematically 

established under the Variational-Asymptotic Method 

(VAM)[5]. In addition, the present approach follows 

the previous works of isotropic sandwich 

plates/shells[6,7] using a similar framework. 

2. Analytic Formulation of Isotropic 

Beam as a Layer using VAM

The isotropic sandwich beam generally consists of 

three isotropic layers: two stiff skin layers (faces) 

and a soft core layer. In this section, the asymptotic 

theory for the planar deformations of the isotropic 

beam as a layer is developed using VAM. 

To this end, the undeformed state is first 

described on the right side of Fig. 1, where the 

position vector to an arbitrary point in the 

undeformed beam is taken to be

                  r rb
                   (1)

where r b
 is the reference line of the undeformed  

beam, taken for convenience as the centroid locus of 

a cross-section. Here, a set of unit vectors b

( ) is associated with the undeformed beam 

configuration, i.e. along  and . Then, the position 

vector to an arbitrary point in the deformed beam 

can be written as

        R RB


B


B        (2)

Fig. 1 Schematic of the isotropic beam deformation 

where R rb b , B is a unit vector normal to 

the cross-section in the deformed reference line, and 

B
 is normal to B

 in the same plane. 

The displacement field is thus described in terms of 

beam variables  and  warping functions 


 and 

, respectively. For the 

dimensional reduction procedure mentioned later, the 

warping functions are unknown at the outset but are 

solved. Therefore, three constraints on the warping 

functions are needed to uniquely specify the  

deformed position vector. According to Hodges[8], 

these constraints are chosen  in the following ways: 

        〈R〉 〈R〉 and 〈R〉∙B           (3)

where

〈∙〉
 



∙

Here, Eq. (3) implies that

              〈〉〈〉〈〉           (4) 

  The beam is assumed to be homogeneous and 

isotropic. Moreover, under assumption of plane stress, 

appropriate for a beam with narrow rectangular 

cross-section of width  and thickness , twice the 

strain energy per unit length is given by   

  

 
  

 〈  
 

  


    
〉   (5)
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with  and  being Young’s modulus and Poisson’s 

ratio, respectively. According to the displacement field 

spelled out in Eq. (2), the two-dimensional(2D) strain 

components are

                  
 ′

                 
  

′

                    
                   (6)

with ∙′ ∙ and ∙
 ∙. Here, , 

 and  are the one-dimensional(1D) generalized 

strains measures and the 1D shearing strain measure, 

respectively, and they are taken as known during the 

dimensional reduction procedure.

Before utilizing VAM, two small parameters must 

be identified. First, the strain is small compared to 

unity. It is clear that ,  and  are , where 

 denotes the maximum strain, and  is the 

maximum value taken on by  in the structure. The 

second small parameter is  where  is the 

wavelength of deformation along the beam, such 

that ∙  ∙. 

The VAM procedure is systematically performed as 

follows: All terms in Eq. (6) are first identified by 

two small parameters, and higher terms than  are 

negligible. Then, these resulting strain components 

become

                  
 

                
 

                 
                      (7)

Second, by plugging Eq. (7) into the expression for 

, twice the zeroth-order approximation energy can 

be obtained in terms of the unknown warping 

functions.

   





〈  




 

  
 〉

〈〉
〈〉

〈〉 

     (8)

where Lagrange multipliers  ,  and  are used 

to enforce constraints on the warping functions in Eq. 

(4). Third, the standard procedure of the calculus of 

variations can be preformed in Eq. (8) to calculate 

the zeroth-order warping functions given by 

         








 
 



 

 


               

       





 

  






               (9)

Finally, by substituting the above warping fields back 

into the original strain energy and discarding all 

terms of orders higher than 

, twice the strain 

energy up to the zeroth-order approximation is 

calculated as      

       
 




 



  







         (10) 

where   . Note that Eq.(10) is consistent 

with zeroth-order Timoshenko beam theory.

3. Universal Theory of Isotropic 

Sandwich Beams

As depicted in Fig. 2, the sandwich beam theory 

requires an expression for the strain energy, which 

is made of two stiff skin layers and a soft core 

layer, per unit length in terms of each 1D 

generalized strain and transverse shear strain 

measure. Therefore, this strain energy of the 

isotropic sandwich beam under the same beam 

thickness can be easily calculated by obtaining the 

final result in the previous section:

  
 




  



   













 



  













  



   









(11) 
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Fig. 2 Configuration of the isotropic sandwich beam 

problem 

Here, the first, second, and third expressions on 

the left-hand side of Eq. (11) denote the strain 

energy for the top skin layer (), core-layer, and 

bottom skin layer (), respectively. Moreover, the 

corresponding  generalized strain and shearing strain 

measures are denoted by  ,  ,  , , ,  and 

 ,  ,  , respectively.

In addition, similar to Berdichevsky’s 

methodology[6,7], six continuity conditions at the 

interfaces of the layers must be introduced into 

Eq.(11) to develop a universal beam model in terms 

of ,  and . When the 2D displacement field is 

kinematically defined as URr in Fig. 1, the 2D 

displacement continuity can be specified by the 

following two conditions at the face-core interfaces: 

            U   U

            U   U           (12)

Alternatively, by using r  rb
 and 

r  r   b
 with b


  b


  b

 , as 

shown in Fig. 2, Eq.(12) can be replaced with the 

following continuity conditions for deformed position 

vectors at the interfaces of the core layer with two 

skin-layers

            R


 R

            R


 R           (13)

On the other hand, four of the continuity conditions 

can be obtained by a proper definition of the 2D 

transverse shear and normal stress fields such that

           
    



           
   



           
    



           
   

           (14)

where and  
   and 







.

  Following Yu[9], the relationship between two sets 

of deformed base vectors (B 
 and B 

 ) for two skin 

layers and  B  for the core layer can uniquely be 

specified by a direction cosine matrix expressed in 

therms of the transverse shear measure of the core 

layer under the small strain assumption, such as

      B
  B B and B

 B B

      B
  B B and B

 B B       

(15) 

Therefore, from Eqs. (15) and (12), one can derive 

the following kinematic identity relationships between 

the two skin layers and one core layer

      

 








 






′

     ′ and   

      

 








 






′

     ′ and                       (16)  

Here, the four interface conditions of 2D transverse 

stress continuity can be automatically satisfied due to 

Eqs. (7), (9), and (13). 

Finally, by plugging Eq. (16) into Eq. (11), we 

find the strain energy of the isotropic sandwich beam:

    
 eff

 effeff
 eff 

eff′eff′eff′

     (17)
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where

eff  

eff  

 








 







eff  

 











 














 








 


eff  




eff  

 








 







eff  

 


















 














 


 




 


eff  

 











 














 




 


(18)

4. Validation Examples

To validate the present approach, two numerical 

examples are presented as a preliminary validation. 

In particular, we consider two extreme cases of the 

isotropic sandwich beam with two different 

face-to-core stiffness ratios (FCSR), 

    and      , and the 

same Poisson’s ratio,   . The thicknesses of the 

two skin layers and the core layer are   , 

  , and  , respectively. The total thickness 

of the beam is defined as tot     , and 

the length of the beam is  tot . A unit width is 

assumed.

For the purpose of comparing this solution with 

the available exact 3D solution[3], the cylindrical 

bending problem of a geometrically linear 

formulation, static analysis is carried out. For the 

sake of saving space, axial and transverse shear 

stress components( and   ) are only plotted at 

points where their maximum values occur (  ).

Fig. 3 Distribution of   vs. the through-thickness 

coordinate for   

Fig. 4 Distribution of   vs. the through-thickness 

coordinate for   

Fig. 5 Distribution of   vs. the through-thickness 

coordinate for   

From the plotted results in Figs. 3 and 4 for 

FCSR =  and Figs. 5 and 6 for FCSR =  , it 
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Fig. 6 Distribution of   vs. the through-thickness 

coordinate for   

is clear that the results obtained from the present 

approach (blue line) have excellent agreement with 

the exact 3D solution (red line) for all the stress 

components through the thickness direction. 

Therefore, this clearly proves that the present 

approach can be used to model isotropic sandwich 

beams confidently and obtain accurate results, even 

in extreme cases of FCSR.

5. Conclusion

The present work represents a new contribution, 

as there is currently no published work on using 

VAM for the universal modeling of a sandwich 

beam, each layer of which consists of isotropic 

material. The following conclusions can be drawn:

1. The universal theory based on the zeroth-order 

Timoshenko beam model for investigating the 

planar deformations of an isotropic sandwich 

beam is systematically established.

2. The close agreement between exact 3D solutions 

and those of the present approach demonstrates 

its capability and accuracy to predict the 

mechanical behavior of isotropic sandwich beams. 
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