DOI QR코드

DOI QR Code

Genetic Diversity and Dye-Decolorizing Spectrum of Schizophyllum commune Population

  • Choi, Yongjun (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Nguyen, Ha Thi Kim (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Lee, Tae Soo (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Kim, Jae Kwang (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Choi, Jaehyuk (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • Received : 2020.06.30
  • Accepted : 2020.08.11
  • Published : 2020.10.28

Abstract

Synthetic dyes are widely used in various industries and their wastage causes severe environmental problems while being hazardous to human health, leading to the need for eco-friendly degradation techniques. The split-gill fungus Schizophyllum commune, which is found worldwide, has the potential to degrade all components of the lignocellulosic biomass and is a candidate for the treatment of synthetic dyes. A systematic molecular analysis of 75 Korean and 6 foreign S. commune strains has revealed the high genetic diversity of this population and its important contribution to the total diversity of S. commune. We examined the dye decolorization ability of this population and revealed 5 excellent strains that strongly decolorized 3 dyes: Crystal Violet, Congo Red and Methylene Blue. Finally, comparison of dye decolorization ability and the phylogenetic identification of these strains generalized their genetic and physiological diversity. This study provides an initial resource for physiological and genetic research projects as well as the bioremediation of textile dyes.

Keywords

References

  1. Khan R, Bhawana P, Fulekar M. 2013. Microbial decolorization and degradation of synthetic dyes: a review. Rev. Environ. Sci. Biotechnol. 12: 75-97. https://doi.org/10.1007/s11157-012-9287-6
  2. Ali H. 2010. Biodegradation of synthetic dyes-a review. Water Air Soil Pollut. 213: 251-273. https://doi.org/10.1007/s11270-010-0382-4
  3. Dwivedi P, Tomar RS. 2018. Bioremediation of textile effluent for degradation and decolourization of synthetic dyes: a review. Int. J. Curr. Res. Life Sci. 7: 1948-1951.
  4. Mir-Tutusaus JA, Baccar R, Caminal G, Sarra M. 2018. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Res. 138: 137-151. https://doi.org/10.1016/j.watres.2018.02.056
  5. Gao D, Du L, Yang J, Wu W-M, Liang H. 2010. A critical review of the application of white rot fungus to environmental pollution control. Crit. Rev. Biotechnol. 30: 70-77. https://doi.org/10.3109/07388550903427272
  6. Cabana H, Jones J, Agathos SN. 2007. Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: a review. Eng. Life Sci. 7: 429-456. https://doi.org/10.1002/elsc.200700017
  7. Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT, et al. 2013. Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour. Technol. 141: 97-108. https://doi.org/10.1016/j.biortech.2013.01.173
  8. Tovar‐Herrera OE, Martha‐Paz AM, Perez‐LLano Y, Aranda E, Tacoronte‐Morales JE, Pedroso‐Cabrera MT, et al. 2018. Schizophyllum commune: An unexploited source for lignocellulose degrading enzymes. MicrobiologyOpen 7: e00637. https://doi.org/10.1002/mbo3.637
  9. Ohm RA, De Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, et al. 2010. Genome sequence of the model mushroom Schizophyllum commune. Nat. Biotechnol. 28: 957-963. https://doi.org/10.1038/nbt.1643
  10. James TY, Moncalvo J-M, Li S, Vilgalys R. 2001. Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics 157: 149-161. https://doi.org/10.1093/genetics/157.1.149
  11. Alam N, Cha YJ, Shim MJ, Lee TS, Lee UY. 2010. Cultural conditions for mycelial growth and molecular phylogenetic relationship in different wild strains of Schizophyllum commune. Mycobiology 38: 17-25. https://doi.org/10.4489/MYCO.2010.38.1.017
  12. Baranova MA, Logacheva MD, Penin AA, Seplyarskiy VB, Safonova YY, Naumenko SA, et al. 2015. Extraordinary genetic diversity in a wood decay mushroom. Mol. Biol. Evol. 32: 2775-2783. https://doi.org/10.1093/molbev/msv153
  13. Asgher M, Yasmeen Q, Iqbal HMN. 2013. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J. Biol. Sci. 20: 347-352. https://doi.org/10.1016/j.sjbs.2013.03.004
  14. Bhatti HN, Akram N, Asgher M. 2008. Optimization of culture conditions for enhanced decolorization of cibacron red FN-2BL by Schizophyllumcommune IBL-6. Appl. Biochem. Biotechnol. 149: 255-264. https://doi.org/10.1007/s12010-007-8123-x
  15. Tang W, Jia R, Zhang D. 2011. Decolorization and degradation of synthetic dyes by Schizophyllum sp. F17 in a novel system. Desalination. 265: 22-27. https://doi.org/10.1016/j.desal.2010.07.024
  16. Yao J, Jia R, Zheng L, Wang B. 2013. Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnol. Bioprocess Eng. 18: 868-877. https://doi.org/10.1007/s12257-013-0357-6
  17. Selvam K, Priya MS. 2012. Biological treatment of Azo dyes and textile industry effluent by newly isolated White rot fungi Schizophyllum commune and Lenzites eximia. Int. J. Environ. Sci. 2: 1926-1935.
  18. Singh R, Ahlawat O, Rajor A. 2017. Decolourization of textile dyes by ligninolytic fungi isolated from spent mushroom substrate. Bull. Env. Pharmacol. Life Sci. 6: 53-66.
  19. Nieuwenhuis BP, Aanen D. 2012. Sexual selection in fungi. J. Evol. Biol. 25: 2397-2411. https://doi.org/10.1111/jeb.12017
  20. Nei M, Tajima F. 1981. DNA polymorphism detectable by restriction endonucleases. Genetics 97: 145-163. https://doi.org/10.1093/genetics/97.1.145
  21. Mardulyn P. 2012. Trees and/or networks to display intraspecific DNA sequence variation? Mol. Ecol. 21: 3385-3390. https://doi.org/10.1111/j.1365-294X.2012.05622.x
  22. Fajarningsih ND. 2016. Internal Transcribed Spacer (ITS) as DNA barcoding to identify fungal species: a review. Squalen Bull Marine Fisheries Postharvest Biotechnol. 11: 37-44. https://doi.org/10.15578/squalen.v11i2.213
  23. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 109: 6241-6246. https://doi.org/10.1073/pnas.1117018109
  24. Carreno-Ruiz SD, LAZARO AAA, GARCIA SC, HERNANDEZ RG, Chen J, NAVARRO GKG, et al. 2019. New record of Schizophyllum (Schizophyllaceae) from Mexico and the confirmation of its edibility in the humid tropics. Phytotaxa 413: 137-148. https://doi.org/10.11646/phytotaxa.413.2.3
  25. Siqueira J, Sutton D, Gené J, García D, Guevara-Suarez M, Decock C, et al. 2016. Schizophyllum radiatum, an emerging fungus from human respiratory tract. J. Clin. Microbiol. 54: 2491-2497. https://doi.org/10.1128/JCM.01170-16
  26. Won EJ, Shin JH, Lim SC, Shin MG, Suh SP, Ryang DW. 2012. Molecular identification of Schizophyllum commune as a cause of allergic fungal sinusitis. Ann. Lab. Med. 32: 375-379. https://doi.org/10.3343/alm.2012.32.5.375
  27. Sofia P, Asgher M, Shahid M, Randhawa M. 2016. Chitosan beads immobilized Schizophyllum commune ibl-06 lignin peroxidase with novel thermo stability, catalytic and dye removal properties. J. Anim. Plant Sci. 26: 1451-1463.
  28. Machado KM, Matheus DR, Bononi VL. 2005. Ligninolytic enzymes production and remazol brilliant blue R decolorization by tropical Brazilian basidiomycetes fungi. Braz. J. Microbiol. 36: 246-252. https://doi.org/10.1590/S1517-83822005000300008
  29. Graham RW, Atkinson T, Kilburn D, Miller Jr R, Warren R. 1993. Rational design and PCR-based synthesis of an artificial Schizophyllum commune xylanase gene. Nucleic Acids Res. 21: 4923-4928. https://doi.org/10.1093/nar/21.21.4923

Cited by

  1. Draft Genome Sequence of the White-Rot Fungus Schizophyllum Commune IUM1114-SS01 vol.49, pp.1, 2020, https://doi.org/10.1080/12298093.2020.1843222