DOI QR코드

DOI QR Code

Characterization of Endolysin LysECP26 Derived from rV5-Like Phage vB_EcoM-ECP26 for Inactivation of Escherichia coli O157:H7

  • Park, Do-Won (Department of Food Science and Biotechnology, Gachon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Gachon University)
  • Received : 2020.05.22
  • Accepted : 2020.07.14
  • Published : 2020.10.28

Abstract

With an increase in the consumption of non-heated fresh food, foodborne shiga toxin-producing Escherichia coli (STEC) has emerged as one of the most problematic pathogens worldwide. Endolysin, a bacteriophage-derived lysis protein, is able to lyse the target bacteria without any special resistance, and thus has been garnering interest as a powerful antimicrobial agent. In this study, rV5-like phage endolysin targeting E. coli O157:H7, named as LysECP26, was identified and purified. This endolysin had a lysozyme-like catalytic domain, but differed markedly from the sequence of lambda phage endolysin. LysECP26 exhibited strong activity with a broad lytic spectrum against various gram-negative strains (29/29) and was relatively stable at a broad temperature range (4℃-55℃). The optimum temperature and pH ranges of LysECP26 were identified at 37℃-42℃ and pH 7-8, respectively. NaCl supplementation did not affect the lytic activity. Although LysECP26 was limited in that it could not pass the outer membrane, E. coli O157: H7 could be effectively controlled by adding ethylenediaminetetraacetic acid (EDTA) and citric acid (1.44 and 1.14 log CFU/ml) within 30 min. Therefore, LysECP26 may serve as an effective biocontrol agent for gram-negative pathogens, including E. coli O157:H7.

Keywords

References

  1. Conway T, Krogfelt KA, Cohen PS. 2004. The life of commensal Escherichia coli in the mammalian intestine. EcoSal Plus 1. doi: 10.1128/ecosalplus.8.3.1.2.
  2. Hunt JM. 2010. Shiga toxin-producing Escherichia coli (STEC). Clin. Lab. Med. 30: 21-45. https://doi.org/10.1016/j.cll.2009.11.001
  3. Yang SC, Lin CH, Aljuffali IA, Fang JY. 2017. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 199: 811-825. https://doi.org/10.1007/s00203-017-1393-y
  4. Pirnay JP, Verbeken G, Ceyssens PJ, Huys I, De Vos D, Ameloot C, et al. 2018. The magistral phage. Viruses 10: 64. https://doi.org/10.3390/v10020064
  5. Lin DM, Koskella B, Lin HC. 2017. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 8: 162-173. https://doi.org/10.4292/wjgpt.v8.i3.162
  6. Viazis S, Akhtar M, Feirtag J, Brabban AD, Diez-Gonzalez F. 2011. Isolation and characterization of lytic bacteriophages against enterohaemorrhagic Escherichia coli. J. Appl. Microbiol. 110: 1323-1331. https://doi.org/10.1111/j.1365-2672.2011.04989.x
  7. Ferguson S, Roberts C, Handy E, Sharma M. 2013. Lytic bacteriophages reduce Escherichia coli O157: H7 on fresh cut lettuce introduced through cross-contamination. Bacteriophage 3: e24323-e24323. https://doi.org/10.4161/bact.24323
  8. McLean SK, Dunn LA, Palombo EA. 2013. Phage inhibition of Escherichia coli in ultrahigh-temperature-treated and raw milk. Foodborne Pathog. Dis. 10: 956-962. https://doi.org/10.1089/fpd.2012.1473
  9. Magnone JP, Marek PJ, Sulakvelidze A, Senecal AG. 2013. Additive approach for inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash. J. Food Prot. 76: 1336-1341. https://doi.org/10.4315/0362-028X.JFP-12-517
  10. Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann H-W, Ahmed R, et al. 2013. The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol. J. 10: 76-76. https://doi.org/10.1186/1743-422X-10-76
  11. Truncaite L, Simoliunas E, Zajanckauskaite A, Kaliniene L, Mankeviciute R, Staniulis J, et al. 2012. Bacteriophage vB_EcoM_FV3: a new member of "rV5-like viruses". Arch. Virol. 157: 2431-2435. https://doi.org/10.1007/s00705-012-1449-x
  12. Kim M, Heu S, Ryu S. 2014. Complete genome sequence of enterobacteria phage 4MG, a new member of the subgroup "PVP-SE1-like phage" of the "rV5-like viruses". Arch. Virol. 159: 3137-3140. https://doi.org/10.1007/s00705-014-2140-1
  13. Korf IHE, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M, et al. 2019. Still something to discover: novel insights into Escherichia coli phage diversity and taxonomy. Viruses 11: 454. https://doi.org/10.3390/v11050454
  14. Schmelcher M, Loessner MJ. 2016. Bacteriophage endolysins: applications for food safety. Curr. Opin. Biotechnol. 37: 76-87. https://doi.org/10.1016/j.copbio.2015.10.005
  15. Shabbir MAB, Hao H, Shabbir MZ, Wu Q, Sattar A, Yuan Z. 2016. Bacteria vs. bacteriophages: parallel evolution of immune arsenals. Front. Microbiol. 7: 1292-1292.
  16. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, et al. 2012. Endolysins as antimicrobials. Adv. Virus Res. 83: 299-365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4
  17. Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, et al. 2014. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS One 9: e108376. https://doi.org/10.1371/journal.pone.0108376
  18. Park DW, Lim GY, Lee YD, Park JH. 2020. Characteristics of lytic phage vB_EcoM-ECP26 and reduction of shiga-toxin producing Escherichia coli on produce romaine. Appl. Biol. Chem. 63: 19. https://doi.org/10.1186/s13765-020-00502-4
  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  20. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48: D265-D268.
  21. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7: 539-539. https://doi.org/10.1038/msb.2011.75
  22. Dumon-Seignovert L, Cariot G, Vuillard L. 2004. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Exp. Purif. 37: 203-206. https://doi.org/10.1016/j.pep.2004.04.025
  23. Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, et al. 2018. A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front. Microbiol. 9: 3302. https://doi.org/10.3389/fmicb.2018.03302
  24. Lim JA, Shin H, Kang DH, Ryu S. 2012. Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S. Res. Microbiol. 163: 233-241. https://doi.org/10.1016/j.resmic.2012.01.002
  25. Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, et al. 2017. A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front. Microbiol. 8: 293.
  26. Yu JH, Lim JA, Chang HJ, Park JH. 2019. Characteristics and lytic activity of phage-derived peptidoglycan hydrolase, LysSAP8, as a potent alternative biocontrol agent for Staphylococcus aureus. J. Microbiol. Biotechnol. 29: 1916-1924. https://doi.org/10.4014/jmb.1908.08021
  27. Lim JA, Shin H, Heu S, Ryu S. 2014. Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria. J. Microbiol. Biotechnol. 24: 803-811. https://doi.org/10.4014/jmb.1403.03035
  28. Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7: 1147-1171. https://doi.org/10.2217/fmb.12.97
  29. Briers Y, Lavigne R, Volckaert G, Hertveldt K. 2007. A standardized approach for accurate quantification of murein hydrolase activity in high-throughput assays. J. Biochem. Biophys. Methods 70: 531-533. https://doi.org/10.1016/j.jbbm.2006.10.009
  30. Tsugita A, Inouye M. 1968. Purification of bacteriophage T4 lysozyme. J. Biol. Chem. 243: 391-397. https://doi.org/10.1016/S0021-9258(18)99306-3
  31. Briers Y, Lavigne R. 2015. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol. 10: 377-390. https://doi.org/10.2217/fmb.15.8
  32. Heimbach J, Rieth S, Mohamedshah F, Slesinski R, Samuel-Fernando P, Sheehan T, et al. 2000. Safety assessment of iron EDTA [sodium iron (Fe3+) ethylenediaminetetraacetic acid]: summary of toxicological, fortification and exposure data. Food Chem. Toxicol. 38: 99-111.
  33. Oliveira H, Vilas Boas D, Mesnage S, Kluskens LD, Lavigne R, Sillankorva S, et al. 2016. Structural and enzymatic characterization of ABgp46, a novel phage endolysin with broad anti-gram-negative bacterial activity. Front. Microbiol. 7: 208.
  34. Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM. 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 66: 2001-2005. https://doi.org/10.1128/AEM.66.5.2001-2005.2000
  35. Lu HJ, Breidt F, Jr., Perez-Diaz IM, Osborne JA. 2011. Antimicrobial effects of weak acids on the survival of Escherichia coli O157:H7 under anaerobic conditions. J. Food Prot. 74: 893-898. https://doi.org/10.4315/0362-028X.JFP-10-404
  36. Hyldgaard M, Mygind T, Meyer RL. 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 3: 12. https://doi.org/10.3389/fmicb.2012.00012
  37. Diez-Martinez R, de Paz H, Bustamante N, Garcia E, Menendez M, Garcia P. 2013. Improving the lethal effect of Cpl-7, a Pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob. Agents Chemother. 57: 5355-5365. https://doi.org/10.1128/AAC.01372-13

Cited by

  1. Characterization of a Lytic Bacteriophage against Pseudomonas syringae pv. actinidiae and Its Endolysin vol.13, pp.4, 2021, https://doi.org/10.3390/v13040631
  2. Genomic Analysis of a Novel Phage Infecting the Turkey Pathogen Escherichia coli APEC O78 and Its Endolysin Activity vol.13, pp.6, 2020, https://doi.org/10.3390/v13061034
  3. Endolysin, a Promising Solution against Antimicrobial Resistance vol.10, pp.11, 2021, https://doi.org/10.3390/antibiotics10111277
  4. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application vol.10, pp.12, 2021, https://doi.org/10.3390/antibiotics10121497