DOI QR코드

DOI QR Code

Design-oriented fast response voltage mode buck converter with adaptive ramp control

  • Peng, Xingxing (School of Physics and Electronics, Central South University) ;
  • Li, Changgeng (School of Physics and Electronics, Central South University)
  • Received : 2020.03.18
  • Accepted : 2020.06.10
  • Published : 2020.09.20

Abstract

This paper proposes a new adaptive ramp voltage mode control scheme. Instead of using the conventional slow compensation path of the voltage mode, the proposed scheme adds an extra feedback path to adjust the amplitude and DC-offset of the ramp signal and to directly accelerate the duty cycle according to the output voltage variation. In addition, a design-oriented analytical method is adopted to intuitively analyzes the loop characteristics and provides accurate instructions for the implementation and optimization of the compensator. A 5-1 V buck converter is implemented in the proposed adaptive ramp control scheme with optimized compensation. Simulation and measurement results show that the converter achieves a bandwidth of up to 591 kHz with a 3 MHz switching frequency and a 65° phase margin. In addition, the undershoot voltage and the recovery time are 16 mV and 19 ㎲ with a load change from 0.5 to 1 A. The proposed control scheme shows superior transient response performance while maintaining fixed frequency operations with a simple system structure.

Keywords

References

  1. Huang, H.-W., Chen, K.-H., Kuo, S.-Y.: Dithering skip modulation, width and dead time controllers in highly efficient dc-dc converters for system-on-chip applications. IEEE J. Solid-State Circuits 42(11), 2451-2465 (2007) https://doi.org/10.1109/JSSC.2007.907175
  2. Suh, J.-D., Seok, J., Kong, B.-S.: A fast response PWM buck converter with active ramp tracking control in a load transient period. IEEE Trans. Circuits Syst. II Exp. Briefs 66(3), 467-471 (2019)
  3. Chen, K., Huang, H., Kuo, S.: Fast-transient dc-dc converter with on-chip compensated error amplifier. IEEE Trans. Circuits Syst. II Exp. Briefs 54(12), 1150-1154 (2007) https://doi.org/10.1109/TCSI.2007.895510
  4. Chang, J., Pedram, M.: Energy minimization using multiple supply voltages. IEEE Trans. VLSI Syst. 5(4), 436-443 (1997) https://doi.org/10.1109/92.645070
  5. Lee, H., Mok, P.K.T, Ki, W.: A novel voltage-control scheme for low-voltage dc-dc converters with fast transient recovery. In: IEEE Proceedings of the International Symposium on Circuits and Systems (ISCSA), pp. 256-259 (2000)
  6. Chang, J., Oh, H., Jun, Y., Kong, B.: Fast output voltage-regulated PWM buck converter with an adaptive ramp amplitude control. IEEE Trans. Circuits Syst. II Exp. Briefs 60(10), 712-716 (2013)
  7. Tseng, T.J., Wu, C.H., Chang-Chien, L.R.: Fast transient voltage-mode buck regulator applying ramp signal with a variable DC-offset scheme. IET Power Electron 5(8), 1408-1417 (2012) https://doi.org/10.1049/iet-pel.2011.0206
  8. Chen, C.C., Huang, C.H., Tseng, S.C.: A fast transient response voltage mode buck converter with an adaptive ramp generator. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering, pp. 1705-1708 (2014)
  9. Liu, J.-M., Wang, P.-Y., Kuo, T.-H.: A current-mode DC-DC buck converter with efficiency-optimized frequency control and reconfigurable compensation. IEEE Trans. Power Electron. 27(2), 869-880 (2012) https://doi.org/10.1109/TPEL.2011.2162079
  10. Li, J., Lee, F.C.: New modeling approach and equivalent circuit representation for current-mode control. IEEE Trans. Power Electron. 25(5), 1218-1230 (2010) https://doi.org/10.1109/TPEL.2010.2040123
  11. Redl, R., Sun, J.: Ripple-based control of switching regulators-an overview. IEEE Trans. Power Electron. 24(12), 2669-2680 (2009) https://doi.org/10.1109/TPEL.2009.2032657
  12. Sun, J.: Characterization and performance comparison of ripplebased control for voltage regulator modules. IEEE Trans. Power Electron. 21(2), 346-353 (2006) https://doi.org/10.1109/TPEL.2005.869747
  13. Li, Y., Chen, C., Tsai, C.: A constant on-time buck converter with analog time-optimized on-time control. IEEE Trans. Power Electron. 35(4), 3754-3765 (2020) https://doi.org/10.1109/tpel.2019.2938532
  14. Ting, C., Lin, J., Chen, C.C.: A quasi-V2 hysteretic buck converter with adaptive COT control for fast DVS and load-transient response in RF applications. IEEE Trans. Circuits Syst. II Exp. Briefs. 67(3), 531-535 (2020)
  15. Lin, Y.C., Chen, C.J., Chen, D., Wang, B.: A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converter. IEEE Trans. Power Electron. 27(10), 4301-4310 (2012) https://doi.org/10.1109/TPEL.2012.2191799
  16. Li, J., Lee, F.C.: Modeling of V2 current-mode control. IEEE Trans. Circuits Syst. I Reg. Papers 57(9), 2552-2563 (2010) https://doi.org/10.1109/TCSI.2010.2043018
  17. Liu, Z., Zhao, J., Qu, K., Li, F., Cao, W.: A new constant ontime control with ripple compensation and offset cancellation for buck converter. In: IEEE 36th International Telecommunications Energy Conference, pp. 1-5 (2014)
  18. Qian, T., Brad, L.: An adaptive ramp compensation scheme to improve stability for DC-DC converters with ripple-based constant on-time control. In: IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3424-3428 (2014)
  19. Lee, S., Bang, J., Yoon, K., Hong, S., Shin, C., Jung, M., Cho, G.: 12.1 A 0.518 mm2 quasi-current-mode hysteretic buck DC-DC converter with 3㎲ load transient response in 0.35 ㎛ BCDMOS. In: IEEE International Solid-State Circuits Conference, pp. 1-3 (2015)
  20. Babes, B., Boutaghane, A., Hamouda, N., Mezaache, M.: Design of a robust voltage controller for a DC-DC buck converter using fractional-order terminal sliding mode control strategy. In: 2019 International Conference on Advanced Electrical Engineering (ICAEE), pp. 1-6 (2019)
  21. Babes, B., Boutaghane, A., Hamouda, N., Mezaache, M., Kahla, S.: A robust adaptive fuzzy fast terminal synergetic voltage control scheme for DC/DC buck converter. In: 2019 International Conference on Advanced Electrical Engineering (ICAEE), pp. 1-5 (2019)