DOI QR코드

DOI QR Code

High-efficiency active cell-to-cell balancing circuit for Lithium-Ion battery modules using LLC resonant converter

  • Pham, Van-Long (Department of Electrical Engineering, Soongsil University) ;
  • Duong, Van-Tinh (Department of Electrical Engineering, Soongsil University) ;
  • Choi, Woojin (Department of Electrical Engineering, Soongsil University)
  • Received : 2020.01.19
  • Accepted : 2020.04.06
  • Published : 2020.07.20

Abstract

A high-efficiency active cell-to-cell balancing circuit for Lithium-Ion battery modules is proposed in this paper. By transferring the charge directly from the highest voltage cell to the lowest voltage cell using an LLC resonant converter designed to achieve zero-voltage switching (ZVS) and nearly zero-current switching (ZCS) for all of the primary switches and zero-voltage zero-current switching (ZVZCS) for the diodes in the secondary, the proposed topology can achieve a high efficiency and a fast balancing speed with a simple control and design. In order to show the improved performance of the proposed method, a prototype circuit was built with a battery module having twelve Lithium-Ion (Li-Ion) batteries. Experimental results are presented to verify the shorter balancing time and higher efficiency of the proposed method when compared with conventional methods. The measured time for the balancing of the twelve cells was 47 min and a maximum efficiency of 94.5% was achieved at 1.5 W.

Keywords

References

  1. https://www.energy.gov/sites/prod/files/2014/02/f8/2011_nissan_leaf_fs.pdf
  2. Lukic, S.M., Cao, J., Bansal, R.C., Rodriguez, F., Emadi, A.: Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 55(6), 2258-2267 (2008) https://doi.org/10.1109/TIE.2008.918390
  3. Andrea, D.: Battery management systems. Artech House, Norwood (2010)
  4. Rahn, C.D., Wang, C.Y.: Battery system engineering. A John Wiley & Sons, Ltd., Hoboken (2013)
  5. Raeber, M., Heinzelmann, A., Taeschler, A.: Beneficial effects of active charge balancing in Lithium-Ion battery systems. J. Clean Energy Technol. 4(3), 225-228 (2016)
  6. Omariba, Z.B., Zhang, L., Sun, D.: Review of battery cell balancing methodologies for optimizing battery pack performance in electric vehicles. IEEE Access 7, 129335-129352 (2019) https://doi.org/10.1109/access.2019.2940090
  7. Daowd, M., Omar, N., Van Den Bossche, P., Van Mierlo, J.: Passive and active battery balancing comparison based on MATLAB simulation. In: Proc. IEEE Vehicle. Power Propulsion Conf., pp. 1-7, 6-9 Sept 2011
  8. Lee, W.C., Drury, D., Mellor, P.: Comparison of passive cell balancing and active cell balancing for automotive batteries. In: Proc. IEEE Vehicle. Power Propulsion Conf., pp. 1-7, 6-9 Sept 2011
  9. Kutkut, N.H., Divan, D.M.: Dynamic equalization techniques for series battery stacks. In: Proc. 18th Int. Telecommun. Energy Conf., pp. 514-521 (1996)
  10. Kim, C.-H., Kim, M.-Y., Park, H.-S., Moon, G.-W.: A modularized two-stage charge equalizer with cell selection switches for series-connected Lithium-Ion battery string in an HEV. IEEE Trans. Power Electron. 27(8), 3764-3774 (2012) https://doi.org/10.1109/TPEL.2012.2185248
  11. Aiguo, Xu, Xie, S., Liu, X.: Dynamic voltage equalization for series-connected ultracapacitors in EV/HEV applications. IEEE Trans. Veh. Technol. 58(8), 3981-3987 (2009) https://doi.org/10.1109/TVT.2009.2028148
  12. Park, H.-S., Kim, C.-E., Kim, C.-H., Moon, G.-W., Lee, J.-H.: A modularized charge equalizer for an HEV Lithium-Ion battery string. IEEE Trans. Ind. Electron. 56(5), 1464-1476 (2009) https://doi.org/10.1109/TIE.2009.2012456
  13. Kutkut, N.H., Divan, D.M., Novotny, D.W.: Charge equalization for series connected battery strings. IEEE Trans. Ind. Appl. 31(3), 562-568 (1995) https://doi.org/10.1109/28.382117
  14. Lim, C.-S., Lee, K.-J., Nam-Joon, Ku, Hyun, D.-S., Kim, R.-Y.: A modularized equalization method based on magnetizing energy for a series-connected Lithium-Ion battery string. IEEE Trans. Power Electron. 29(4), 1791-1799 (2014) https://doi.org/10.1109/TPEL.2013.2270000
  15. Shang, Y., Xia, B., Zhang, C., Cui, N., Yang, J., Mi, C.: A modularization method for battery equalizers using multi-winding transformers. IEEE Trans. Veh. Technol. 66(10), 8710-8722 (2017) https://doi.org/10.1109/TVT.2017.2702065
  16. Imtiaz, A.M., Khan, F.H.: Time shared flyback converter based regenerative cell balancing technique for series connected Li-Ion battery strings. IEEE Trans. Power Electron. 28(12), 5960-5975 (2013) https://doi.org/10.1109/TPEL.2013.2257861
  17. Guo, Y., Lu, R., Wu, G., Zhu, C.: A high efficiency isolated bidirectional equalizer for Lithium-Ion battery string. In: Vehicle Power and Propulsion Conf., Seoul, pp. 962-966, 9-12 Oct 2012
  18. Kim, C.-H., Kim, M.-Y., Moon, G.-W.: A modularized charge equalizer using a battery monitoring IC for series-connected Li-Ion battery strings in electric vehicles. IEEE Trans. Power Electron. 28(8), 3779-3787 (2013) https://doi.org/10.1109/TPEL.2012.2227810
  19. Chen, H., Zhang, L., Han, Y.: System-theoretic analysis of a class of battery equalization systems: mathematical modeling and performance evaluation. IEEE Trans. Veh. Technol. 64(4), 1445-1457 (2015) https://doi.org/10.1109/TVT.2014.2330692
  20. Park, H.-S., Kim, C.-H., Park, K.-B., Moon, G.-W., Lee, J.-H.: Design of a charge equalizer based on battery modularization. IEEE Trans. Veh. Technol. 58(7), 3216-3223 (2009) https://doi.org/10.1109/TVT.2009.2015331
  21. Kim, M.-Y., Kim, C.-H., Kim, J.-H., Moon, G.-W.: A chain structure of switched capacitor for improved cell balancing speed of Lithium-Ion batteries. IEEE Trans. Ind. Electron. 61(8), 3989-3999 (2014) https://doi.org/10.1109/TIE.2013.2288195
  22. Uno, M., Tanaka, K.: Influence of high-frequency charge-discharge cycling induced by cell voltage equalizers on the life performance of Lithium-Ion cells. IEEE Trans. Veh. Technol. 60(4), 1505-1515 (2011) https://doi.org/10.1109/TVT.2011.2127500
  23. Baughman, A.C., Ferdowsi, M.: Double-tiered switched-capacitor battery charge equalization technique. IEEE Trans. Ind. Electron. 55(6), 2277-2285 (2008) https://doi.org/10.1109/TIE.2008.918401
  24. Phung, T.H., Collet, A., Crebier, J.C.: An optimized topology for next-to-next balancing of series-connected Lithium-Ion cells. IEEE Trans. Power Electron. 29(9), 4603-4613 (2014) https://doi.org/10.1109/TPEL.2013.2284797
  25. Park, S.-H., Park, K.-B., Kim, H.-S., Moon, G.-W., Youn, M.-J.: Single-magnetic cell-to-cell charge equalization converter with reduced number of transformer windings. IEEE Trans. Power Electron. 27(6), 2900-2911 (2012) https://doi.org/10.1109/TPEL.2011.2178040
  26. Kim, M.-Y., Kim, J.-H., Moon, G.-W.: Center-cell concentration structure of a cell-to-cell balancing circuit with a reduced number of switches. IEEE Trans. Power Electron. 29(10), 5285-5297 (2014) https://doi.org/10.1109/TPEL.2013.2292078
  27. Daowd, M., Antoine, M., Omar, N., van den Bossche, P., van Mierlo, J.: Single switched capacitor battery balancing system enhancements. Energies 6, 2149-2174 (2013) https://doi.org/10.3390/en6042149
  28. Park, S.H., Kim, T.S., Park, J.S., Moon, G.W., Yoon, M.J.: A new buck-boost type battery equalizer. In: Proc. IEEE 24th Annu. Appl. Power Electron. Conf. Expo., pp. 1246-1250, 15-19 Feb 2009
  29. Lee, K., Lee, S., Choi, Y., Kang, B.: Active balancing of Li-Ion battery cells using transformer as energy carrier. IEEE Trans. Industr. Electron. 64(2), 1251-1257 (2017) https://doi.org/10.1109/TIE.2016.2611481
  30. Lee, K.-M., Chung, Y.-C., Sung, C.-H., Kang, B.: Active cell balancing of Li-Ion batteries using LC resonant circuit. IEEE Trans. Ind. Electron. 62(9), 5491-5501 (2015) https://doi.org/10.1109/TIE.2015.2408573
  31. Ouyang, M., Chu, Z., Lu, L., Li, J., Han, X., Feng, X., Liu, G.: Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles. J. Power Sources 286, 309-320 (2015) https://doi.org/10.1016/j.jpowsour.2015.03.178
  32. Beattie, S.D., Loveridge, M.J., Lain, M.J., Ferrari, S., Polzin, B.J., Bhagat, R., Dashwood, R.: Understanding capacity fade in silicon based electrodes for Lithium-Ion batteries using three electrode cells and upper cut-off voltage studies. J. Power Sources 302, 426-430 (2016) https://doi.org/10.1016/j.jpowsour.2015.10.066
  33. Pham, V.L., Nguyen, T.T., Tran, D.H., Vu, V.B., Choi, W.: A new cell-to-cell fast balancing circuit for Lithium-Ion batteries in electric vehicle and energy storage system. In: Proc. IEEE 8th International Power Electronic and Motion Control Conf., pp. 2461-2465 (2016)
  34. Pham, V.L., Khan, A.B., Nguyen, T.T., Choi, W.: A low cost, small ripple, and fast balancing circuit for Lithium-Ion battery strings. In: Proc. IEEE Transportation Electrification Conference and Expo, Asia-Pacific, pp. 861-865 (2016)

Cited by

  1. Recent Advancements in Battery Management System for Li‐Ion Batteries of Electric Vehicles: Future Role of Digital Twin, Cyber‐Physical Systems, Battery Swapping Technology, and Nondestr vol.9, pp.8, 2021, https://doi.org/10.1002/ente.202000984
  2. C-LLC-LL resonant converter with wide-gain-range and low-stress for hold-up operation vol.21, pp.9, 2020, https://doi.org/10.1007/s43236-021-00280-2