DOI QR코드

DOI QR Code

Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter

  • Xu, Wei (School of Mechanical and Electrical Engineering, Wuhan University of Technology) ;
  • Xu, Jinli (School of Mechanical and Electrical Engineering, Wuhan University of Technology) ;
  • Yan, Xiaofeng (SAIC-GM-Wuling Automobile Co., Ltd)
  • Received : 2019.04.23
  • Accepted : 2019.08.26
  • Published : 2020.01.20

Abstract

Accurate estimation of the state of charge (SOC) of a lithium-ion battery is one of the most crucial issues of battery management system (BMS). Existing methods can achieve accurate estimation of the SOC under stable working conditions. However, they may result in inaccuracy under unstable working conditions such as dynamic cycles and different temperature conditions. This is due to the fact that the dynamic behaviors of battery states have not been considered by the parameter identification methods. In this paper, a SOC and parameter joint estimation method is put forward, where the battery model parameters are identified in real time by a particle filter (PF) with consideration of the battery states. Meanwhile, a cubature Kalman filter (CKF) is used to estimate SOC. Then, experiments under dynamic cycles and different temperature conditions are undertaken to assess the performance of the proposed algorithm when compared with the existing joint estimations. The results show that the proposed joint method can achieve a high accuracy and robustness for SOC estimation.

Keywords

Acknowledgement

This work was supported by the Natural Science Foundation of China (Grant No. 11172220).

References

  1. Shaukat, N., Khan, B., Ail, S.M., Mehood, C.A., Khan, J., Farid, U., Majid, M., Anwar, S.M., Jawad, M., Ullah, Z.: A survey on electric vehicle transportation within smart grid system. Renew. Sustain. Energy Rev. 81, 1329-1349 (2018) https://doi.org/10.1016/j.rser.2017.05.092
  2. Lu, L.G.G., Han, X.-B., Li, J.Q., Hua, J.F., Ouyang, M.G.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272-288 (2013) https://doi.org/10.1016/j.jpowsour.2012.10.060
  3. Rui, X., Cao, J.Y., Yu, Q.Q., He, H.W., Sun, F.C.: Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 6(99), 1832-1843 (2018) https://doi.org/10.1109/ACCESS.2017.2780258
  4. Hannan, M.A., Lipu, M.S.H., Hussain, A., Mohamed, A.: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev. 78, 834-854 (2017) https://doi.org/10.1016/j.rser.2017.05.001
  5. Kong, S.N., Huang, Y.F., Moo, C.S., Hsieh, Y.C.: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 86(9), 1506-1511 (2009) https://doi.org/10.1016/j.apenergy.2008.11.021
  6. Zhang, Y.H., Song, W.J., Lin, S.L., Lv, J., Feng, Z.P.: A critical review on state of charge of batteries. J. Renew. Sustain. Energy 5(2), R93-R110 (2013)
  7. Zhong, F.L., Li, H., Zhong, S.M., Zhong, Q.S., Yin, C.: An soc estimation approach based on adaptive sliding mode observer and fractional order equivalent circuit model for lithium-ion batteries. Commun. Nonlinear Sci. Numer. Simul. 24(13), 127-144 (2015) https://doi.org/10.1016/j.cnsns.2014.12.015
  8. Wei, J.W., Dong, G.Z., Chen, Z.H.: On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment. J. Power Sources 365, 308-319 (2017) https://doi.org/10.1016/j.jpowsour.2017.08.101
  9. Hu, X.S., Sun, F.C., Zou, Y.: Estimation of state of charge of a lithium-ion battery pack for electric vehicles using an adaptive luenberger observer. Energies 3, 1586-1603 (2010) https://doi.org/10.3390/en3091586
  10. Chaoui, H., Ibe-Ekeocha, C.C.: State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Trans. Veh. Technol. 66(10), 8773-8783 (2017) https://doi.org/10.1109/TVT.2017.2715333
  11. Sheng, H., Xiao, J.: Electric vehicle state of charge estimation: nonlinear correlation and fuzzy support vector machine. J. Power Sources 281, 131-137 (2015) https://doi.org/10.1016/j.jpowsour.2015.01.145
  12. Mu, H., Xiong, R., Duan, H.F., Chang, Y.H., Chen, Z.Y.: A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Appl. Energy 207, 384-393 (2017) https://doi.org/10.1016/j.apenergy.2017.07.003
  13. Anthony, B., Benjamin, D., Sebastien, G., Mathisa, G., Frederic, S., Delphine, R.: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241, 680-689 (2013) https://doi.org/10.1016/j.jpowsour.2013.05.040
  14. Plett, G.L.: Extended Kalman filtering for battery management systems of lipb-based hev battery packs: Part 1. Background. J. Power Sources 134(2), 252-261 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.031
  15. Plett, G.L.: Extended Kalman filtering for battery management systems of lipb-based hev battery packs. Part 2. modeling and identification. J. Power Sources 134(2), 262-276 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.032
  16. Plett, G.L.: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 3. State and parameter estimation. J. Power Sources 134(2), 277-292 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.033
  17. Xiong, R., Gong, X.Z., Mi, C.C., Sun, F.C.: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter. J. Power Sources 243, 805-816 (2013) https://doi.org/10.1016/j.jpowsour.2013.06.076
  18. Xiong, R., Sun, F.C., Chen, Z., He, H.W.: A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles. Appl. Energy 113, 463-476 (2014) https://doi.org/10.1016/j.apenergy.2013.07.061
  19. Pan, H.H., Lu, Z.Q., Lin, W.L., Li, J.Z., Chen, L.: State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model. Energy 138, 764-775 (2017) https://doi.org/10.1016/j.energy.2017.07.099
  20. Chiang, C.J., Yang, J.L., Cheng, W.C.: Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter. J. Power Sources 234, 234-243 (2013) https://doi.org/10.1016/j.jpowsour.2013.01.173
  21. Aung, H., Soon Low, K., Ting Goh, S.: State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-Ukfst) in nanosatellite. IEEE Trans. Power Electron. 30(9), 4774-4783 (2015) https://doi.org/10.1109/TPEL.2014.2361755
  22. Meng, J.H., Luo, G.Z., Gao, F.: Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine. IEEE Trans. Power Electron. 31(3), 2226-2238 (2016) https://doi.org/10.1109/TPEL.2015.2439578
  23. Tian, Y., Xia, B.Z., Sun, W., Xu, Z.H., Zheng, W.W.: A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter. J. Power Sources 270(3), 619-626 (2014) https://doi.org/10.1016/j.jpowsour.2014.07.143
  24. Xia, B.Z., Wang, H.Q., Tian, Y., Wang, M.Z.: State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter. Energies 8(6), 5916-5936 (2015) https://doi.org/10.3390/en8065916
  25. Xia, B.S., Sun, Z., Zhang, R.F., Lao, Z.Z.: A cubature particle filter algorithm to estimate the state of the charge of lithium-ion batteries based on a second-order equivalent circuit model. Energies 10(4), 457 (2017) https://doi.org/10.3390/en10040457
  26. Cui, X.G., Jing, Z., Luo, M.J., Guo, Y.Z.: A new method for state of charge estimation of lithium-ion batteries using square root cubature Kalman filter. Energies 11(1), 209 (2018) https://doi.org/10.3390/en11010209
  27. Zhang, X., Wang, Y.J., Liu, C., Chen, Z.H.: A novel approach of remaining discharge energy prediction for large format lithium-ion battery pack. J. Power Sources 343, 216-225 (2017) https://doi.org/10.1016/j.jpowsour.2017.01.054
  28. Shen, P., Ouyang, M.G., Han, X.B., Feng, X.N.: Error analysis of the model-based state of charge observer for lithium-ion batteries. IEEE Trans. Veh. Technol. 67(9), 8055-8064 (2018) https://doi.org/10.1109/tvt.2018.2842820
  29. Zou, C.F., Hu, X.S., Wei, Z.B., Wik, T.: Electrochemical estimation and control for lithium-ion battery health-aware fast charging. IEEE Trans. Ind. Electron. 65(8), 6635-6645 (2018) https://doi.org/10.1109/tie.2017.2772154
  30. Moura, S.J., Chaturvedi, N.A., Krstic, M.: PDE estimation techniques for advanced battery management systems-part I: SOC estimation. Am. Control Conf, Proc (2012). https://doi.org/10.1109/ACC.2012.6315019
  31. Tran, N.T., Vilathgamuwa, M., Li, Y., Farrell, T., Choi, S.S., Teague, J.: State of charge estimation of lithiu-m ion batteries using an extended single particle model and sigmapoint Kalman filter. Proc. IEEE SPEC (2017). https://doi.org/10.1109/SPEC.2017.8333564
  32. Klein, R., Chaturvedi, N.A., Christensen, J., Ahmed, J., Findeisen, R., Kojic, A.: Electrochemical model based observer design for a lithiu-m ion battery. IEEE Trans. Syst. Technol. 21(2), 289-301 (2013) https://doi.org/10.1109/TCST.2011.2178604
  33. Sun, H.C., Xiong, R., He, H.W.: A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique. Appl. Energy 162, 1399-1409 (2016) https://doi.org/10.1016/j.apenergy.2014.12.021
  34. Xiong, R., He, H.H., Zhao, K.: Research on an online identification algorithm for a thevenin battery model by an experimental approach. Int. J. Green Energy 12(3), 272-278 (2014) https://doi.org/10.1080/15435075.2014.891512
  35. Chen, Q.Y., Jiang, J.C., Ruan, H.J., Zhang, C.P.: A simply designed and universal sliding mode observer for the SOC estimation of lithium-ion batteries. Iet Power Electron. 10(6), 697-705 (2017) https://doi.org/10.1049/iet-pel.2016.0095
  36. Hu, X.S., Li, S.B., Peng, H.: A comparative study of equivalent circuit models for li-ion batteries. J. Power Sources 198, 359-367 (2012) https://doi.org/10.1016/j.jpowsour.2011.10.013
  37. Shen, P., Ouyang, M.G., Lu, L.G., Li, J.Q., Feng, X.N.: The co-estimation of state of charge, state of health and state of function for lithium-ion batteries in electric vehicles. IEEE Trans. Veh. Technol. 67(1), 92-103 (2018) https://doi.org/10.1109/tvt.2017.2751613
  38. Zhang, Y.Z., Xiong, R., He, H.W., Shen, W.X.: A lithium-ion battery pack state of charge and state of energy estimation algorithms using a hardware-in-the-loop validation. IEEE Trans. Power Electron. 32(6), 4421-4431 (2017) https://doi.org/10.1109/TPEL.2016.2603229
  39. Shen, Y.Q.: Improved chaos genetic algorithm based state of charge determination for lithium batteries in electric vehicles. Energy 152, 576-585 (2018) https://doi.org/10.1016/j.energy.2018.03.174
  40. Yu, Q.Q., Xiong, R., Lin, C., Shen, W.X., Deng, J.J.: Lithium-ion battery parameters and state-of-charge joint estimation based on h infinity and unscented kalman filters. IEEE Trans. Veh. Technol. 66(10), 8693-8701 (2017) https://doi.org/10.1109/TVT.2017.2709326
  41. Ye, M., Guo, H., Cao, B.G.: A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter. Appl. Energy 190, 740-748 (2017) https://doi.org/10.1016/j.apenergy.2016.12.133
  42. Chen, C., Xinong, R., Shen, W.X.: A lithium-ion battery-in-the-loop approach to test and validate multiscale Dual H infinity filters for state-of-charge and capacity estimation. IEEE Trans. Power Electron. 33(1), 332-342 (2018) https://doi.org/10.1109/TPEL.2017.2670081
  43. Liu, X.T., Chen, Z.H., Zhang, C.B., Wu, J.: A novel temperature-compensated model for power li-ion batteries with dual-particle-filter state of charge estimation. Appl. Energy 123, 263-272 (2014) https://doi.org/10.1016/j.apenergy.2014.02.072
  44. Zarei, J., Ehsan, S.: Nonlinear and constrained state estimation based on the cubature kalman filter. Ind. Eng. Chem. Res. 53(10), 3938-3949 (2014) https://doi.org/10.1021/ie4020843

Cited by

  1. Active state and parameter estimation as part of intelligent battery systems vol.39, 2020, https://doi.org/10.1016/j.est.2021.102638
  2. SOC estimation of lithium-ion batteries for electric vehicles based on multimode ensemble SVR vol.21, pp.9, 2021, https://doi.org/10.1007/s43236-021-00279-9
  3. Critical Review of Intelligent Battery Systems: Challenges, Implementation, and Potential for Electric Vehicles vol.14, pp.18, 2020, https://doi.org/10.3390/en14185989
  4. Online Parameters Identification and State of Charge Estimation for Lithium-Ion Battery Using Adaptive Cubature Kalman Filter vol.12, pp.3, 2020, https://doi.org/10.3390/wevj12030123
  5. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM vol.234, 2020, https://doi.org/10.1016/j.energy.2021.121236
  6. Speed-sensorless control of induction motors based on adaptive EKF vol.21, pp.12, 2020, https://doi.org/10.1007/s43236-021-00325-6
  7. On-line adaptive asynchronous parameter identification of lumped electrical characteristic model for vehicle lithium-ion battery considering multi-time scale effects vol.517, 2020, https://doi.org/10.1016/j.jpowsour.2021.230725