DOI QR코드

DOI QR Code

Internal model control of induction motors based on extended state observer

  • Liu, Jing (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Yin, Zhonggang (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Bai, Cong (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Du, Na (Department of Electrical Engineering, Xi'an University of Technology)
  • Received : 2019.06.01
  • Accepted : 2019.08.19
  • Published : 2020.01.20

Abstract

The conventional internal model control (IMC) has been used widely due to its advantages of less computational burden and simple implementation. Since the internal model controller has a fixed filter, disturbances created by mismatched models, parameter variations and other unstructured dynamic uncertainties in induction motors (IMs) cannot be eliminated by a fixed IMC. To solve these problems, the control strategy of an induction motor using internal model control with an extended state observer (IMC-ESO) was proposed. IM parameter variations and other unstructured dynamic uncertainties are considered in IM drives. Based on this model, an ESO is defined as a hypothetical equivocal function. Then the estimated disturbance is applied as a feed-forward compensation to accurately control the current loop. Since the designed ESO works concurrently with IMC, the fast dynamic response of the IMC is maintained. The feasibility and validity of the proposed method are validated by experimental results.

Keywords

References

  1. Lee, S.B., Wiedenbrug, E., Younsi, K.: ECCE 2013 tutorial: testing and diagnostics of induction machines in an industrial environment. In: Presented at ECCE 2013, Denver, CO, USA (2013)
  2. Jose, A.A-D., Quijano-Lopez, A., Fuster-Roig, V., Nevot, C.: Case stories on induction motors fault diagnosis based on current analysis. In: Proceedings of PCIC Europe 2016, Berlin, Germany, June 2016, pp. 115-123
  3. Lee, S.B.: SDEMPED 2013 tutorial: testing and monitoring of medium/high voltage induction machines. In: Presented at the SDEMPED 2013, Valencia, SPAIN, Sep 2013
  4. Mosaad, Mohamed I.: Model reference adaptive control of STATCOM for grid integration of wind energy systems. IET Electr. Power Appl. 12(5), 605-613 (2018) https://doi.org/10.1049/iet-epa.2017.0662
  5. Nguyen, A.T., Rafaq, M.S., Choi, H.H., Jung, J.-W.: A model reference adaptive control-based speed controller for a surface-mountedpermanent magnet synchronous motor drive. IEEE Trans. Ind. Electron. (2018). https://doi.org/10.1149/TIE-pel.2018.2826480
  6. Al-Maliki, A.Y., Iqbal, K.: FLC-based PID controller tuning for sensorless speed control of DC motor. In: 2018 IEEE International Conference on Industrial Technology (ICIT). https://doi.org/10.1109/ICIT.2018.8352171
  7. Dominguez, J.R., et al.: Copper and core loss minimization for induction motors using high-order sliding-mode control. IEEE Trans. Ind. Electron. 59(7), 2877-2889 (2012) https://doi.org/10.1109/TIE.2011.2171170
  8. Singh, V.K., Pillai, G.N.: Non-singular fast terminal sliding mode control of general class of chaotic system. In: 2011 IEEE 6th IEEE Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 4-6 (2017)
  9. Liu, J.-X., Vazquez, S., Wu, L.-G., Marquez, A., Gao, H.J., Franquelo, L.G.: Extended state observer-based sliding-mode control for three-phase power converters. IEEE Trans. Ind. Electron. 64(1), 22-31 (2017) https://doi.org/10.1109/TIE.2016.2610400
  10. Levant, A.: Higher-order sliding modes, differentiation and output feedback control. Int. J. Control 76(9-10), 924-941 (2003) https://doi.org/10.1080/0020717031000099029
  11. Rodriguez, J., et al.: State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inf. 9(2), 1003-1016 (2013) https://doi.org/10.1109/TII.2012.2221469
  12. Cortes, P., Kazmierkowski, M., Kennel, R., Quevedo, D., Rodriguez, J.: Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 55(12), 4312-4324 (2008) https://doi.org/10.1109/TIE.2008.2007480
  13. Xia, C., Yan, Y., Song, P., Shi, T.: Voltage disturbance rejection for matrix converter-based PMSM drive system using internal model control. IEEE Trans. Ind. Electron. 59(1), 361-372 (2015) https://doi.org/10.1109/TIE.2011.2134058
  14. Garcia, C.E., Morari, M.: Internal model control. 1. a unifying review and some new results. Ind. Eng. Chem. Process Des. Dev. 21, 308-323 (1982) https://doi.org/10.1021/i200017a016
  15. Economous, C.G., Morari, M., Palsson, B.O.: Internal model control. 5. Extension to nonlinear systems. Ind. Eng. Chem. Process Des. Dev. 25, 403-411 (1986) https://doi.org/10.1021/i200033a010
  16. Sethi, B.K., Vinayak, J.R., Sivakumaran, N.: Internal model controller for CFBC boiler using neural networks. In: 2018 Indian Control Conference (ICC) January 4-6, IIT Kanpur, India (2018)
  17. Shiva, C.K., Mukherjee, V.: Comparative performance assessment of a novel quasi-oppositional harmony search algorithm and internal model control method for automatic generation control of power system. IET Gener. Transm. Distrib. 9(11), 1137-1150 (2015) https://doi.org/10.1049/iet-gtd.2014.0619
  18. Zhu, Q., Yin, Z.-G., Zhang, Y.-Q., Niu, J.-B., Li, Y., Zhong, Y.-R.: Research on two-degree-of-freedom internal model control strategy for induction motor based on immune algorithm. IEEE Trans. Ind. Electron. 63(3), 1981-1992 (2016) https://doi.org/10.1109/TIE.2015.2512222
  19. Bazaei, A., Yong, Y.-K., Moheimani, S.O.R.: Combining spiral scanning and internal model control for sequential AFM imaging at video rate. IEEE Trans. Mechatron. 22(1), 371-380 (2017) https://doi.org/10.1109/TMECH.2016.2574892
  20. Cui, P., Zhang, D.-C., Yang, S., Li, H.-T.: Friction compensation based on time delay control and internal model control for gimbal system in MSCMG. IEEE Trans. Ind. Electron. 64(5), 3798-3807 (2017) https://doi.org/10.1109/TIE.2016.2644620
  21. Qiu, Zeng, Santillo, Mario, Jankovic, Mrdjan, Sun, Jing: Composite adaptive internal model control and its application to boost pressure control of a turbocharged gasoline engine. IEEE Trans. Control Syst. Technol. 23(6), 371-380 (2015)
  22. Sun, X.-D., Shi, Z., Chen, L., Yang, Z.-B.: Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method. IEEE Trans. Energy Convers. 31(4), 1539-1548 (2016) https://doi.org/10.1109/TEC.2016.2591925
  23. Zuo, S., Song, Y.D., Lewis, F.L., Davoudi, A.: Output containment control of linear heterogeneous multi-agent systems using internal model principle. IEEE Trans. Cybern. 47(8), 2099-2109 (2017) https://doi.org/10.1109/TCYB.2016.2641394
  24. Mohamed, Y.A.R.I.: Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer. IEEE Trans. Ind. Electron. 54(4), 1981-1988 (2007) https://doi.org/10.1109/TIE.2007.895074
  25. Liu, C., Liu, G., Fang, J.C.: Feedback linearization and extended state observer-based control for rotor-AMBs system with mismatched uncertainties. IEEE Trans. Ind. Electron. 64(2), 1313-1322 (2017) https://doi.org/10.1109/TIE.2016.2612622
  26. Aharon, I., Shmilovitz, D.: Uncertainty and disturbance estimator-based controllers design under finite control bandwidth constraint. IEEE Trans. Ind. Electron. 65(2), 1439-1449 (2018) https://doi.org/10.1109/tie.2017.2726987
  27. Dal, M., Teodorescu, R., Blaabjerg, F.: Complex state variable- and disturbance observer based current controllers for AV drives: an experimental comparison. IET Power Electron. 6(9), 1792-1802 (2013) https://doi.org/10.1049/iet-pel.2012.0748
  28. Kosi, K., Tar, J.K., Haidegger, T. et al.: Application of Luenberger's Observer in RFPT-based adaptive control-a case study. In: 2013 IEEE International Symposium on Computational Intelligence and Informatics, pp. 365-369 (2013)
  29. Accetta, A., Cirrincione, M., Pucci, M., Vitale, G.: Neural sensorless control of linear induction motors by a full-order luenberger observer considering the end effects. IEEE Trans. Ind. Appl. 50(3), 1891-1904 (2014) https://doi.org/10.1109/TIA.2013.2288429

Cited by

  1. U-Model-Based Two-Degree-of-Freedom Internal Model Control of Nonlinear Dynamic Systems vol.23, pp.2, 2020, https://doi.org/10.3390/e23020169