DOI QR코드

DOI QR Code

Dynamic modeling, sensitivity assessment, and design of VSC-based microgrids with composite loads

  • Zhao, Zhuoli (School of Automation, Guangdong University of Technology) ;
  • Yang, Ping (School of Electric Power, South China University of Technology) ;
  • Bottrell, Nathaniel (Department of Electrical and Electronic Engineering, Imperial College London) ;
  • Lai, Loi Lei (School of Automation, Guangdong University of Technology) ;
  • Green, Timothy C. (Department of Electrical and Electronic Engineering, Imperial College London)
  • Received : 2019.05.21
  • Accepted : 2019.09.10
  • Published : 2020.01.20

Abstract

Microgrids are seen as useful for increasing the flexibility of distribution networks and integrating large amounts of distributed generations. Ensuring the dynamic stability of power converter-dominated microgrids that is robust to a range of load conditions is a significant challenge and essential for ensuring reliability. Induction motor (IM) loads are widespread and have substantial impacts on the dynamic behavior and stability characteristics of low-inertia microgrids. The stability assessment and design of microgrids considering composite loads have not been sufficiently addressed in the current literature, where static loads are commonly used to simplify the modeling and analysis. In this paper, the dynamic stability of voltage source converter-based microgrids is investigated, considering composite loads as dynamic element. A complete state-space model of the microgrid with both IM load and static load is developed. Participation factor analysis is conducted to identify the contribution of the composite loads to the dominant oscillatory modes of the microgrid. Furthermore, sensitivity assessment of the dominant eigenvalues is presented to further identify the appropriate ranges of variations in the control parameters, operating conditions and operating points of the microgrid. It is shown that composite loads in a realistic microgrid significantly affect the dominant oscillatory modes and, consequently, the system stability margin. Ignoring the composite load dynamics in microgrid stability studies may lead to misleading analytical results. Simulations based on MATLAB/Simulink and experimental tests based on a laboratory prototype microgrid are implemented to demonstrate the theoretical analysis.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant 51907031, by the Operation Fund of Guangdong Key Laboratory of Clean Energy Technology under Grant 2017B030314127, and by the Joint Ph.D. Scholarship of China Scholarship Council under Grant 201406150017.

References

  1. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C.: Microgrids. IEEE Power Energy Mag. 5(4), 78-94 (2007) https://doi.org/10.1109/MPAE.2007.376583
  2. Wang, X., Guerrero, J., Blaabjerg, F., Chen, Z.: A review of power electronics based microgrids. J. Power Electron. 12(1), 181-192 (2012) https://doi.org/10.6113/JPE.2012.12.1.181
  3. Miveh, M.R., Rahmat, M.F., Ghadimi, A.A., Mustafa, M.W.: Power quality improvement in autonomous microgrids using multi-functional voltage source inverters: a comprehensive review. J. Power Electron. 15(4), 1054-1065 (2015) https://doi.org/10.6113/JPE.2015.15.4.1054
  4. Guerrero, J.M., Vasquez, J.C., Matas, J., de Vicuna, L.G., Castilla, M.: Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158-172 (2011) https://doi.org/10.1109/TIE.2010.2066534
  5. Zhao, Z., Yang, P., Wang, Y., Xu, Z., Guerrero, J.M.: Dynamic characteristics analysis and stabilization of PV-based multiple microgrid clusters. IEEE Trans. Smart Grid 10(1), 805-818 (2019) https://doi.org/10.1109/tsg.2017.2752640
  6. Hiskens, A., Milanovic, J.V.: Load modelling in studies of power system damping. IEEE Trans. Power Syst. 10(4), 1781-1788 (1995) https://doi.org/10.1109/59.476041
  7. Bottrell, N., Prodanovic, M., Green, T.C.: Dynamic stability of a microgrid with an active load. IEEE Trans. Power Electron. 28(11), 5107-5119 (2013) https://doi.org/10.1109/TPEL.2013.2241455
  8. Pogaku, N., Prodanovic, M., Green, T.C.: Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 22(2), 613-625 (2007) https://doi.org/10.1109/TPEL.2006.890003
  9. Rasheduzzaman, M., Mueller, J.A., Kimball, J.W.: "An accurate small-signal model of inverter-dominated islanded microgrids using dq reference frame", IEEE. J. Emerg. Sel. Top. Power Electron. 2(4), 1070-1080 (2014) https://doi.org/10.1109/JESTPE.2014.2338131
  10. Guerrero, J.M., Vasquez, J.C., Matas, J., Castilla, M., de Vicuna, L.G.: Control strategy for flexible microgrid based on parallel line-interactive UPS systems. IEEE Trans. Ind. Electron. 56(3), 726-736 (2009) https://doi.org/10.1109/TIE.2008.2009274
  11. Guo, X., Lu, Z., Wang, B., Sun, X., Wang, L., Guerrero, J.M.: Dynamic phasors-based modeling and stability analysis of droop-controlled inverters for microgrid applications. IEEE Trans. Smart Grid 5, 2980-2987 (2014) https://doi.org/10.1109/TSG.2014.2331280
  12. Katiraei, F., Iravani, M.R.: Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans. Power Syst. 21(4), 1821-1831 (2006) https://doi.org/10.1109/TPWRS.2006.879260
  13. Zhao, Z., Yang, P., Guerrero, J.M., Xu, Z., Green, T.C.: Multiple-time-scales hierarchical frequency stability control strategy of medium-voltage isolated microgrid. IEEE Trans. Power Electron. 31(8), 5974-5991 (2016) https://doi.org/10.1109/TPEL.2015.2496869
  14. Mohamed, Y.A.-R.I., El-Saadany, E.F.: Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans. Power Electron. 23(6), 2806-2816 (2008) https://doi.org/10.1109/TPEL.2008.2005100
  15. Majumder, R., Chaudhuri, B., Ghosh, A., Majumder, R., Ledwich, G., Zare, F.: Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Trans. Power Syst. 25(2), 796-808 (2010) https://doi.org/10.1109/TPWRS.2009.2032049
  16. Delghavi, M.B., Yazdani, A.: An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids. Power Deliv. IEEE Trans. On 26(3), 1764-1773 (2011) https://doi.org/10.1109/TPWRD.2011.2119497
  17. Liang, H., Choi, B.J., Zhuang, W., Shen, X.: Stability enhancement of decentralized inverter control through wireless communications in microgrids. IEEE Trans. Smart Grid 4(1), 321-331 (2013) https://doi.org/10.1109/TSG.2012.2226064
  18. Radwan, A.A., Mohamed, Y.A.R.I.: Modeling, analysis, and stabilization of converter-fed ac microgrids with high penetration of converter-interfaced loads. IEEE Trans. Smart Grid 3(3), 1213-1225 (2012) https://doi.org/10.1109/TSG.2012.2183683
  19. Taylor, Power System: Voltage stability. McGraw-Hill, New York (1994)
  20. Kundur, P.: Power system stability and control. EPRI/McGraw-Hill, New York (1994)
  21. Potamianakis, E.G., Vournas, C.D.: Short-term voltage instability: effects on synchronous and induction machines. IEEE Trans. Power Syst. 21(2), 791-798 (2006) https://doi.org/10.1109/TPWRS.2006.873022
  22. de Mello, F.P., Feltes, J.W.: Voltage oscillatory instability caused by induction motor loads. IEEE Trans. Power Syst. 11(3), 1279-1285 (1996) https://doi.org/10.1109/59.535668
  23. Nomikos, B.M., Vournas, C.D.: Investigation of induction machine contribution to power system oscillations. IEEE Trans. Power Syst. 20(2), 916-925 (2005) https://doi.org/10.1109/TPWRS.2005.846120
  24. Kasem Alaboudy, H., Zeineldin, H.H., Kirtley, J.L.: Microgrid stability characterization subsequent to fault-triggered islanding incidents. IEEE Trans. Power Deliv. 27(2), 658-669 (2012) https://doi.org/10.1109/TPWRD.2012.2183150
  25. Alaboudy, A.H.K., Zeineldin, H.H., Kirtley, J.: Simple control strategy for inverter-based distributed generator to enhance microgrid stability in the presence of induction motor loads. IET Gener. Transm. Distrib. 7(10), 1155-1162 (2013) https://doi.org/10.1049/iet-gtd.2013.0024
  26. Falahi, M., Butler-Purry, K.L., Ehsani, M.: Induction motor starting in islanded microgrids. IEEE Trans. Smart Grid 4(3), 1323-1331 (2013) https://doi.org/10.1109/TSG.2013.2271261
  27. Diaz, G., Gonzalez-Moran, C., Gomez-Aleixandre, J., Diez, A.: Composite loads in stand-alone inverter-based microgrids-modeling procedure and effects on load margin. IEEE Trans. Power Syst. 25(2), 894-905 (2009) https://doi.org/10.1109/TPWRS.2009.2036360
  28. Bottrell, N., Green, T.: Modelling microgrids with active loads. In: Proc. 13th IEEE Workshop Control Model. Power Electron., pp. 358-362 (2012)
  29. Krause, P., Sudhoff, S., Wasynczuk, O.: Analysis of Electric Machinery and Drive Systems. Wiley, Hoboken (2002)
  30. Pal, B.C., Mei, F.: Modelling adequacy of the doubly fed induction generator for small-signal stability studies in power systems. IET Renew. Power Gener. 2(3), 181-190 (2008) https://doi.org/10.1049/iet-rpg:20070128
  31. Farmer, R.: Power systems dynamics and stability. In: Grigsby, L. (ed.) The Electric Power Engineering Handbook. CRC, Boca Raton (2001)
  32. Pal, B., Choudhuri, B.: Robust Control in Power Systems. Springer, New York (2005)
  33. Toliyat, H.A., Kliman, G.B.: Handbook of Electric Motors. CRC, Boca Raton (2004)
  34. Mastorocostas, C., Kioskeridis, I., Margaris, N.: Thermal and slip effects on rotor time constant in vector controlled induction motor drives. IEEE Trans. Power Electron. 21(2), 495-504 (2006) https://doi.org/10.1109/TPEL.2005.869765
  35. Cathey, J.J., Cavin, R.K., Ayoub, A.K.: Transient load model of an induction motor. IEEE Trans. Power Appar. Syst. 4, 1399-1406 (1973) https://doi.org/10.1109/TPAS.1973.293548
  36. Ahmed-Zaid, S., Taleb, M.: Structural modeling of small and large induction machines using integral manifolds. IEEE Trans. Energy Convers. 6(3), 529-535 (1991) https://doi.org/10.1109/60.84331
  37. Barklund, E., Pogaku, N., Prodanovic, M., Hernandez-Aramburo, C., Green, T.C.: Energy management in autonomous microgrid using stability-constrained droop control of inverters. IEEE Trans. Power Electron. 23(5), 2346-2352 (2008) https://doi.org/10.1109/TPEL.2008.2001910
  38. Bottrell, N., Green, T.C.: Comparison of current-limiting strategies during fault ride-through of inverters to prevent latch-up and wind-up. IEEE Trans. Power Electron. 29(7), 3786-3797 (2014) https://doi.org/10.1109/TPEL.2013.2279162
  39. Hernandez-Aramburo, C.A., Green, T.C., Mugniot, N.: Fuel consumption minimization of a microgrid. IEEE Trans. Ind. Appl. 23, 673-681 (2005) https://doi.org/10.1109/TIA.2005.847277
  40. Larabee, J., Pellegrino, B., et al.: Induction motor starting methods and issues, In: PCIC Conf., Industry Applications Society 52nd Annual (2005)