DOI QR코드

DOI QR Code

Fructose-arginine, a non-saponin molecule of Korean Red Ginseng, attenuates AIM2 inflammasome activation

  • Ahn, Huijeong (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Han, Byung-Cheol (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Lee, Seung-Ho (Korea Ginseng Research Institute, Korea Ginseng Corporation) ;
  • Lee, Geun-Shik (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
  • Received : 2020.03.04
  • Accepted : 2020.06.26
  • Published : 2020.11.15

Abstract

Background: Korean Red Ginseng extract (RGE) has been reported to act as an inflammasome modulator. Ginsenosides, saponin molecules of RGE, selectively inhibit activation of NLRP3 and AIM2 inflammasomes, while non-saponin molecules of RGE upregulate inflammasome components associated with the initiation of NLRP3 inflammasome activation. In this study, we investigated the effect of non-saponin components of RGE on AIM2 inflammasome activation. Methods: The role of non-saponins of RGE on AIM2 inflammasomes was tested in mouse bone marrow-derived macrophages, a human monocyte-like cell line, and a mouse animal model. Cells or mice were transfected with dsDNA or inoculated with Listeria monocytogenes to activate AIM2 inflammasomes. Several indices of inflammasome activation were examined via immunoblot or ELISA analysis. Results: The non-saponin fraction and saponin-eliminating fraction (SEF) of RGE selectively attenuated the activation of AIM2 inflammasomes, but not that of NLRP3 or NLRC4 inflammasomes. Fructose-arginine, an amino-sugar, was shown to be effective against AIM2 inflammasome activation. Conclusion: Non-saponins of RGE, such as fructose-arginine, might be effective in regulating infectious and autoimmune diseases resulting from AIM2 inflammasome activation.

Keywords

References

  1. Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, Hong EJ, An BS, Jeung EB, Lee GS. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 2014;158:143-50. https://doi.org/10.1016/j.imlet.2013.12.017
  2. Han BC, Ahn H, Lee J, Jeon E, Seo S, Jang KH, Lee SH, Kim CH, Lee GS. Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 2017;41:513-23. https://doi.org/10.1016/j.jgr.2016.10.001
  3. Ahn H, Han BC, Kim J, Kang SG, Kim PH, Jang KH, So SH, Lee SH, Lee GS. Nonsaponin fraction of Korean Red Ginseng attenuates cytokine production via inhibition of TLR4 expression. J Ginseng Res 2019;43:291-9. https://doi.org/10.1016/j.jgr.2018.03.003
  4. Ahn H, Kwon HM, Lee E, Kim PH, Jeung EB, Lee GS. Role of inflammasome regulation on immune modulators. J Biomed Res 2018;32:401-10. https://doi.org/10.7555/JBR.32.20170120
  5. DeYoung KL, Ray ME, Su YA, Anzick SL, Johnstone RW, Trapani JA, Meltzer PS, Trent JM. Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 1997;15:453-7. https://doi.org/10.1038/sj.onc.1201206
  6. Lugrin J, Martinon F. The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev 2018;281:99-114. https://doi.org/10.1111/imr.12618
  7. Kim J, Ahn H, Han BC, Shin H, Kim JC, Jung EM, Kim J, Yang H, Lee J, Kang SG, et al. Obovatol inhibits NLRP3, AIM2, and non-canonical inflammasome activation. Phytomedicine: Int J Phytotherap Phytopharmacol 2019;63:153019. https://doi.org/10.1016/j.phymed.2019.153019
  8. Ha KS, Jo SH, Kang BH, Apostolidis E, Lee MS, Jang HD, Kwon YI. In vitro and in vivo antihyperglycemic effect of 2 amadori rearrangement compounds, arginyl-fructose and arginyl-fructosyl-glucose. J Food Sci 2011;76:H188-93. https://doi.org/10.1111/j.1750-3841.2011.02361.x
  9. Ahn H, Kim J, Kang SG, Yoon SI, Ko HJ, Kim PH, Hong EJ, An BS, Lee E, Lee GS. Mercury and arsenic attenuate canonical and non-canonical NLRP3 inflammasome activation. Sci Rep 2018;8:13659. https://doi.org/10.1038/s41598-018-31717-7
  10. Ahn H, Kang SG, Yoon SI, Kim PH, Kim D, Lee GS. Poly-gamma-glutamic acid from Bacillus subtilis upregulates pro-inflammatory cytokines while inhibiting NLRP3, NLRC4 and AIM2 inflammasome activation. Cell Mol Immunol 2018;15:111-9. https://doi.org/10.1038/cmi.2016.13
  11. Lee J, Ahn H, Hong EJ, An BS, Jeung EB, Lee GS. Sulforaphane attenuates activation of NLRP3 and NLRC4 inflammasomes but not AIM2 inflammasome. Cell Immunol 2016;306-307:53-60. https://doi.org/10.1016/j.cellimm.2016.07.007
  12. Ahn H, Jeon E, Kim JC, Kang SG, Yoon SI, Ko HJ, Kim PH, Lee GS. Lentinan from shiitake selectively attenuates AIM2 and non-canonical inflammasome activation while inducing pro-inflammatory cytokine production. Sci Rep 2017;7:1314. https://doi.org/10.1038/s41598-017-01462-4
  13. Kim J, Ahn H, Yu S, Ahn JH, Ko HJ, Kweon MN, Hong EJ, An BS, Lee E, Lee GS. IkappaBzeta controls NLRP3 inflammasome activation via upregulation of the Nlrp3 gene. Cytokine 2020;127:154983. https://doi.org/10.1016/j.cyto.2019.154983
  14. Kim J, Ahn H, Woo HM, Lee E, Lee GS. Characterization of porcine NLRP3 inflammasome activation and its upstream mechanism. Vet Res Commun 2014;38:193-200. https://doi.org/10.1007/s11259-014-9602-5
  15. Ahn H, Kang SG, Yoon SI, Ko HJ, Kim PH, Hong EJ, An BS, Lee E, Lee GS. Methylene blue inhibits NLRP3, NLRC4, AIM2, and non-canonical inflammasome activation. Sci Rep 2017;7:12409. https://doi.org/10.1038/s41598-017-12635-6
  16. Ahn H, Kim J, Lee MJ, Kim YJ, Cho YW, Lee GS. Methylsulfonylmethane inhibits NLRP3 inflammasome activation. Cytokine 2015;71:223-31. https://doi.org/10.1016/j.cyto.2014.11.001
  17. Ahn H, Lee GS. Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine: Int J Phytother Phytopharmacol 2017;24:77-86. https://doi.org/10.1016/j.phymed.2016.11.019
  18. Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 2016;46:269-80. https://doi.org/10.1002/eji.201545839
  19. Tsuchiya K, Hara H, Kawamura I, Nomura T, Yamamoto T, Daim S, Dewamitta SR, Shen Y, Fang R, Mitsuyama M. Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J Immunol 2010;185:1186-95. https://doi.org/10.4049/jimmunol.1001058
  20. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  21. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schroder GF, Fitzgerald KA, Wu H, Egelman EH. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014;156:1193-206. https://doi.org/10.1016/j.cell.2014.02.008
  22. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015;526:666-71. https://doi.org/10.1038/nature15541
  23. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009;458:514-8. https://doi.org/10.1038/nature07725
  24. Albrecht M, Choubey D, Lengauer T. The HIN domain of IFI-200 proteins consists of two OB folds. Biochem Biophys Res Commun 2005;327:679-87. https://doi.org/10.1016/j.bbrc.2004.12.056
  25. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 2010;11:395-402. https://doi.org/10.1038/ni.1864
  26. Davidson PM, Lammerding J. Broken nucleielamins, nuclear mechanics, and disease. Trends Cell Biol 2014;24:247-56. https://doi.org/10.1016/j.tcb.2013.11.004
  27. Hu B, Jin C, Li HB, Tong J, Ouyang X, Cetinbas NM, Zhu S, Strowig T, Lam FC, Zhao C, et al. The DNA-sensing AIM2 inflammasome controls radiationinduced cell death and tissue injury. Science 2016;354:765-8. https://doi.org/10.1126/science.aaf7532
  28. Suschak JJ, Wang S, Fitzgerald KA, Lu S. Identification of Aim2 as a sensor for DNA vaccines. J Immunol 2015;194:630-6. https://doi.org/10.4049/jimmunol.1402530
  29. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 2019;19:477-89. https://doi.org/10.1038/s41577-019-0165-0
  30. Kawane K, Motani K, Nagata S. DNA degradation and its defects. Cold Spring Harb Perspect Biol 2014;6.
  31. Khare S, Ratsimandresy RA, de Almeida L, Cuda CM, Rellick SL, Misharin AV, Wallin MC, Gangopadhyay A, Forte E, Gottwein E, et al. The PYRIN domainonly protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 2014;15:343-53. https://doi.org/10.1038/ni.2829
  32. Johnston JB, Barrett JW, Nazarian SH, Goodwin M, Ricciuto D, Wang G, McFadden G. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 2005;23:587-98. https://doi.org/10.1016/j.immuni.2005.10.003
  33. Dorfleutner A, Chu L, Stehlik C. Inhibiting the inflammasome: one domain at a time. Immunol Rev 2015;265:205-16. https://doi.org/10.1111/imr.12290
  34. Liu T, Tang Q, Liu K, Xie W, Liu X, Wang H, Wang RF, Cui J. TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep 2016;16:1988-2002. https://doi.org/10.1016/j.celrep.2016.07.019

Cited by

  1. NLRP3 Triggers Attenuate Lipocalin-2 Expression Independent with Inflammasome Activation vol.10, pp.7, 2020, https://doi.org/10.3390/cells10071660