DOI QR코드

DOI QR Code

Smoke Hazard Assessment of Cypress Wood Coated with Boron/Silicon Sol Compounds

붕소/실리콘 졸 화합물로 도포된 편백 목재의 연기유해성 평가

  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University)
  • 진의 (강원대학교 소방방재연구센터) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2020.01.03
  • Accepted : 2020.02.11
  • Published : 2020.02.28

Abstract

In this study, boron/silicon sol compounds were applied to wood for construction and durable materials, and fire risks were investigated in terms of smoke performance index (SPI), smoke growth index (SGI), and smoke intensity (SI). The compound was synthesized by reacting tetraethoxyorthosilicate with boric acid and boronic acid derivatives. Smoke characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment for cypress wood. The fire intensity fixed the external heat flux at 50 kW/㎡. The smoke performance index measured after the combustion reaction increased between 13.4% and 126.7% compared with cypress wood. The fire risk due to the smoke performance index decreased in the order of cypress, phenylboronic acid/silicon sol (PBA/Si), (2-methylpropyl) boronic acid/silicon sol (IBBA/Si), boric acid/silicon sol (BA/Si). The smoke growth index decreased between 12.0% and 57.5% compared to the base specimen. The risk of fire caused by the smoke growth index decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si. The fire risk due to smoke intensity decreased between 3.2% and 57.8%, and in the order of cypress, PBA/Si, IBBA/Si, BA/Si. COpeak concentrations ranged between 85 and 93 ppm, and decreased between 37% and 43% compared to the base specimen. A comprehensive assessment of the fire risk on smoke hazards decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si.

본 연구는 건축 및 내구재용 목재인 편백 목재에 붕소/실리콘 졸 화합물을 처리한 후 화재위험성을 연기 유해성에 대하여 연기성능지수(SPI), 연기성장지수(SGI)와 연기강도(SI)를 중심으로 조사하였다. 화합물은 Tetraethoxyorthosilicate를 Boronic acid와 Boric acid 유도체와 반응시켜 합성하였다. 연기 특성은 편백목재에 대하여 Cone calorimeter (ISO 5660-1) 장비를 이용하여 조사하였다. 화재강도는 50 kW/㎡의 외부 열 유속(External heat flux)으로 고정시켰다. 연소 반응 후 측정된 연기성능지수는 편백목재와 비교하여 13.4~126.7% 증가하였다. 연기성능지수에 의한 화재위험성은 편백목재, PBA/Si, IBBA/Si, BA/Si 순서로 감소하였다. 연기성장지수는 편백목재와 비교하여 12.0~57.5% 감소하였다. 연기성장지수에 의한 화재위험성은 편백목재, PBA/Si, IBBA/Si, BA/Si 순서로 낮아졌다. 연기강도에 의한 화재위험성은 3.2~57.8% 감소하였으며 편백목재, PBA/Si, IBBA/Si, BA/Si 순서로 낮아졌다. COpeak 농도는 85~93 ppm였으며 공시편과 비교하여 37~43% 감소하였다. 화재위험성을 연기유해성에 대해 종합적으로 평가하면 편백목재, PBA/Si, IBBA/Si, BA/Si순서로 낮아졌다.

Keywords

References

  1. I. Simkovic, H. Martvonova, D. Manikova and O. Grexa, "Flame Retardance of Insolubilized Silica Inside of Wood Material", Journal of Applied Polymer Science, Vol. 97, No. 5, pp. 1948-1952 (2005). https://doi.org/10.1002/app.21962
  2. H. Miyafuji and S. Saka, "Fire-resisting Properties in Several TiO2 Wood-Inorganic Composites and Their Topochemistry", Wood Science and Technology, Vol. 31, No. 6, pp. 449-455 (1997). https://doi.org/10.1007/BF00702567
  3. S. Bourbigot and S. Duquesne: "Fire Retardant Polymers:Recent Developments and Opportunities", Journal of Material Chemistry, Vol. 17, No. 22, pp. 2283-2300 (2007). https://doi.org/10.1039/b702511d
  4. C. Mai and H. Militz: "Modification of Wood with Silicon Compounds. Treatment Systems based on Organic Silicon Compounds - a Review", Wood Science and Technology, Vol. 37, No. 6, pp. 453-461 (2004). https://doi.org/10.1007/s00226-004-0225-9
  5. J. Giancaspro, P. Balaguru and R. Lyon, "Fire Protection of Flammable Materials Utilizing Geopolymer", SAMPE Journal, Vol. 40, No. 5, pp. 42-49 (2004).
  6. Q. Liu, C. Lv, Y. Yang, F. He and L. Ling: "Investigation on the Effects of Fire Retardants on the Thermal Decomposition of Wood-Derived Rayon Fiber in an Inert Atmosphere by Thermogravimetry-Mass Spectrometry", Thermochimica Acta, 2004, Vol. 419, No. 1-2, pp. 205-209 (2004). https://doi.org/10.1016/j.tca.2003.12.014
  7. F. Ximenes and P. Evans: "Protection of Wood using Oxy-Aluminum Compounds", Forest Products Journal, Vol. 56, No. 11-12, pp. 116-122 (2006).
  8. J. Li, H. Yu, Q. Sun, Y. Liu, Y. Cui and Y. Lu: "Growth of TiO2 coating on Wood Surface using Controlled Hydrothermal Method at Low Temperatures", Applied Surface Science, Vol. 256, No. 16, pp. 5046-5050 (2010). https://doi.org/10.1016/j.apsusc.2010.03.053
  9. M. Saxena, R. Morchhale, P. Asokan and B. Prasad: "Plant Fiber - Industrial Waste Reinforced Polymer Composites as a Potential Wood Substitute Material", Journal of Composite Materials, Vol. 42, No. 4, pp. 367-384 (2008). https://doi.org/10.1177/0021998307087014
  10. B. Mahltig, H. Haufe and H. Bottcher, "Functionalisation of Textiles by Inorganic Sol-Gel Coatings", Journal of Materials Chemistry, Vol. 15, No. 41, pp. 4385-4398 (2005). https://doi.org/10.1039/b505177k
  11. H. Schmidt, "Considerations about the Sol-Gel Process: from the Classical Sol-Gel Route to Advanced Chemical Nanotechnologies, Journal of Sol-Gel Science and Technology, Vol. 40, No. 31, pp. 115-130 (2006). https://doi.org/10.1007/s10971-006-9322-6
  12. N. Sharma, C. Verma, V. Chariar and R. Prasad, "EcoFriendly Flame-Retardant Treatments for Cellulosic Green Building Materials", Indoor and Built Environment, Vol. 24, No. 3, pp. 422-432 (2015). https://doi.org/10.1177/1420326X13516655
  13. D. Baer, P. Burrows and A. El-Azab, "Enhancing Coating Functionality using Nanoscience and Nanotechnology", Progress in Organic Coatings, Vol. 47 No. 3-4, pp. 342-356 (2003). https://doi.org/10.1016/S0300-9440(03)00127-9
  14. Q. Zhang, W. Zhang, J. Huang, Y. Lai, T. Xing, G. Chen, W. Jin, H. Liu and B. Sun, "Flame Retardance and Thermal Stability of Wool Fabric treated by Boron containing Silica Sols", Materials and Design, Vol. 85, pp. 796-799 (2015). https://doi.org/10.1016/j.matdes.2015.07.163
  15. S. Yang, J. Wang, S. Huo, J. Wang and Y. Tang, "Synthesis of a Phosphorus/Nitrogen containing Compound based on Maleimide and Cyclotriphosphazene and its Flame Retardant Mechanism on Epoxy Resin", Polymer Degradation and Stablity, Vol. 126, pp. 9-16 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.01.011
  16. X. Wang, Y. Hu, L. Song, W. Xing, H. Lu, P. Lv and G. Jie, "Effect of a Triazine Ring containing Charring Agent on Fire Retardancy and Thermal Degradation of Intumescent Flame Retardant Epoxy Resins", Polymers Advanced Technologies, Vol. 22 No. 12, pp. 2480-2487 (2011). https://doi.org/10.1002/pat.1788
  17. G. You, Z. Cheng, H. Peng and H. He, "The Synthesis and Characterization of a Novel Phosphorus-Nitrogen containing Flame Retardant and its Application in Epoxy Resins", Journal of Applied Polymer Science, Vol. 131 No. 22, pp. 1-10 (2014).
  18. M. Dogan and S. M. Unlu, "Flame Retardant Effect of Boron Compounds on Red Phosphorus containing Epoxy Resins", Polymer Degradation Stability, Vol. 99, pp. 12-17 (2014). https://doi.org/10.1016/j.polymdegradstab.2013.12.017
  19. Y. Zhou, J. Feng, H. Peng, H. Qu and J. Hao, "Catalytic Pyrolysis and Flame Retardancy of Epoxy Resins with Solid Acid Boron Phosphate", Polymer Degradation Stability, Vol. 110, pp. 395-404 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.10.009
  20. T. Zhang, W. Liu, M. Wang, P. Liu, Y. Pan and D. Liu, "Synthesis of a Boron/Nitrogen containing Compound based on Triazine and Boronic Acid and its Flame Retardant Effect on Epoxy Resin", High Performance Polymers, Vol. 29, No. 5, pp. 513-523 (2017). https://doi.org/10.1177/0954008316650929
  21. J. Alongi, C. Colleoni, G. Rosace and G. Malucelli, "Thermal and Fire Stability of Cotton Fabrics coated with Hybrid Phosphorus-doped Silica Films", Journal of Thermal Analysis and Calorimetry, Vol. 110, pp. 1207-1216 (2012). https://doi.org/10.1007/s10973-011-2142-0
  22. R. H. White and M. A. Dietenberger, "Wood Handbook: Wood as an Engineering Material, Ch.17: Fire Safety", Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1999).
  23. G. Shen, S. Tao, S. Wei, Y. Zhang, R. Wang, B. Wang, W. Li, H. Shen, et al., "Emissions of Parent, Nitro, and Oxygenated Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion in Rural China", Environmental Science and Technology, Vol. 46, No. 15, pp. 8123-8130 (2012). https://doi.org/10.1021/es301146v
  24. J. Ding, J. Zhong, Y. Yang, B. Li, G. Shen, Y. Su, C. Wang, W. Li, et al., "Occurrence and Exposure to Polycyclic Aromatic Hydrocarbons and their Derivatives in a Rural Chinese Home through Biomass Fuelled Cooking", Environmental Pollution, Vol. 169, pp. 160-166 (2012). https://doi.org/10.1016/j.envpol.2011.10.008
  25. G. Shen, S. Tao, S. Wei, Y. Chen, Y. Zhang, H. Shen, Y. Huang, D. Zhu, et al., "Field Measurement of Emission Factors of PM, EC, OC, Parent, Nitro-, and Oxy-Polycyclic Aromatic Hydrocarbons for Residential Briquette, Coal Cake, and Wood in Rural Shanxi, China", Environmetal Science and Technology, Vol. 47 No. 6, pp. 2998-3005 (2013). https://doi.org/10.1021/es304599g
  26. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement)", Genever, Switzerland (2015).
  27. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin and B. Fei, "Highly Efficient Flame Retardant and Smoke Suppression Mechanism of Boron Modified Graphene Oxide/Poly (Lactic Acid) Nanocomposites", Carbon, Vol. 150, pp. 8-20, (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  28. L. Yan, Z. Xu and N. Deng, "Effects of Polyethylene Glycol Borate on the Flame Retardancy and Smoke Suppression Properties of Transparent Fire-Retardant Coatings Applied on Wood Substrates", Progress in Organic Coatings, Vol. 135, pp. 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
  29. T. Fateh, T. Rogaume, J. Luche, F. Richard and F. Jabou, "Characterization of the Thermal Decomposition of Two Kinds of Plywood with a Cone Calorimeter-FTIR Apparatus", Journal of Analytical and Applied Pyrolysis, Vol. 107, pp. 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  30. Y. J. Chung and E. Jin, "Smoke Generation by Burning Test of Cypress Plates Treated with Boron Compounds", Applied Chemistry for Engineering, Vol. 29, No. 6, pp. 670-676 (2018). https://doi.org/10.14478/ACE.2018.1076
  31. E. Jin and Y. J. Chung, "Heat Risk Assessment of Wood Coated with Boron/Silicon Sol", Fire Science and Engineering, Vol. 33, No. 2, pp. 9-19 (2019).
  32. U. S. Forest Service (USFS), "Wood Handbook: Wood as an Engineering Material", U. S. Department of Agriculture, Forest Products Laboratory, Madison, WI, USA (1999).
  33. Q. Wang, J. Li and J. Winandy, "Chemical Mechanism of Fire Retardance of Boric Acid on Wood", Wood. Science and Technology, Vol. 38, No. 5, pp. 375-89 (2004). https://doi.org/10.1007/s00226-004-0246-4
  34. F. Zhou, T. Zhang, B. Zou, W. Hu, B. Wang, J. Zhan, C. Ma and Y. Hu, "Synthesis of a Novel Liquid Phosphoruscontaining Flame Retardant for Flexible Polyurethane foam:Combustion Behaviors and Thermal Properties", Polymer Degradation and Stability, Vol. 171, pp. 109029-109039 (2020) https://doi.org/10.1016/j.polymdegradstab.2019.109029
  35. MSHA, "Carbon Monoxide, MSHA's Occupational Illness and Injury Prevention Program Topic", U. S. Department of Labor, USA (2015).
  36. D. A. Purser, "A Bioassay Model for Testing the Incapacitating Effects of Exposure to Combustion Product Atmospheres using Cynomolgus Monkeys", Journal of Fire Science, Vol. 2, pp. 20-26 (1984). https://doi.org/10.1177/073490418400200104