DOI QR코드

DOI QR Code

Streptococcus Mutans Biofilm Inhibition Effect of Indocyanine Green and Near Infrared Diode Laser

Indocyanine Green과 근적외선 다이오드 레이저의 Streptococcus mutans 세균막에 대한 억제 효과

  • Kim, Yeowon (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Howon (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Juhyun (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Seo, Hyunwoo (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Siyoung (Department of Microbiology and Immunology, College of Dentistry, Gangneung-Wonju National University)
  • 김여원 (강릉원주대학교 치과대학 소아.청소년치과학교실 및 구강과학연구소) ;
  • 박호원 (강릉원주대학교 치과대학 소아.청소년치과학교실 및 구강과학연구소) ;
  • 이주현 (강릉원주대학교 치과대학 소아.청소년치과학교실 및 구강과학연구소) ;
  • 서현우 (강릉원주대학교 치과대학 소아.청소년치과학교실 및 구강과학연구소) ;
  • 이시영 (강릉원주대학교 치과대학 미생물학 및 면역학교실)
  • Received : 2020.07.07
  • Accepted : 2020.07.28
  • Published : 2020.11.30

Abstract

The purpose of this study was to evaluate the effect of Indocyanine Green (ICG) and near-infrared (NIR) diode laser on Streptococcus mutans biofilms depending on ICG concentrations. S. mutans biofilms were formed on a Hydroxyapatite disk, and 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 mg/mL ICG solutions dissolved in sterile distilled water and a NIR diode laser having a power of 300 mW and a wavelength of 808 nm were applied to the biofilms. The temperature changes of the biofilm surface according to the concentrations of the ICG solution were measured using a 1-channel thermocouple thermometer. Compared to the control group, in the groups with only the 3.0, 4.0, 5.0 mg/mL ICG solution application, and in the groups with the 1.0, 2.0, 3.0, 4.0, 5.0 mg/mL ICG solution application and light irradiation, a statistically significant decrease in the bacterial counts were observed. The temperature increase according to the concentration of the ICG solutions was 9.53℃, 10.43℃, 11.40℃, 12.10℃, 12.67℃, and 13.63℃ in ICG solutions of 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 mg/mL respectively. This study presents the potential for clinical application of ICG and NIR diode lasers as a new method for preventing dental caries.

이 연구의 목적은 Indocyanine Green(ICG)과 근적외선(Near Infrared, NIR) 다이오드 레이저가 Streptococcus mutans 세균막에 미치는 효과를 ICG 용액의 농도에 따라 평가하는 것이었다. Hydroxyapatite disk에 S. mutans 세균막을 형성하여 멸균 증류수에 용해시킨 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 mg/mL의 ICG 용액과 300 mW의 출력, 808 nm의 파장을 가지는 NIR 다이오드 레이저를 적용하였다. 모든 표본은 공초점 레이저 주사 현미경(Confocal Laser Scanning Microscopy, CLSM)을 이용하여 관찰하였다. 또한 1채널 열전대 온도계와 Thermocouple을 이용하여 광조사 시에 ICG 용액의 농도에 따른 세균막 표면의 온도 변화를 함께 측정하였다. 대조군과 비교 시에 ICG 용액 만을 도포한 군에서는 3.0, 4.0, 5.0 mg/mL의 농도에서, 그리고 ICG 용액의 도포와 광조사를 함께 시행한 군에서는 1.0, 2.0, 3.0, 4.0, 5.0 mg/mL의 농도에서 통계적으로 유의한 세균 수의 감소가 관찰되었다. 용액의 농도에 따른 온도 증가량은 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 mg/mL의 ICG 용액에서 각각 9.53℃, 10.43℃, 11.4℃, 12.1℃, 12.67℃, 13.63℃ 이었다. 즉, ICG 용액의 농도가 3.0 mg/mL이면 그 자체로도 S. mutans 세균막을 억제할 수는 있으나, NIR 다이오드 레이저를 함께 사용하면 주변 조직 손상의 우려 없이 더 효율적인 항균 작용을 나타낼 수 있다. 따라서, 이번 연구는 새로운 치아 우식증 예방법으로 ICG와 NIR 다이오드 레이저의 임상적 적용의 가능성을 제시한다.

Keywords

References

  1. Fatma Aytac Bal, Ismail Ozkocak, Merve Agaccioglu, et al. : Effects of photodynamic therapy with indocyanine green on Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther, 26:229-234, 2019. https://doi.org/10.1016/j.pdpdt.2019.04.005
  2. Lee KY : Dental disease changes by age in the last 9 years: 2010 to 2018. Health Policy Institute, 13:1-7, 2020.
  3. Robert J Berkowitz : Mutans Streptococci: Acquisition and Transmission. Pediatr Dent, 28:106-109, 2006.
  4. Jeffrey A Banas : Virulence properties of Streptococcus mutans. Front Biosci, 9:1267-1277, 2004. https://doi.org/10.2741/1305
  5. Rajesh S, Koshi E, Philip K, Mohan A : Antimicrobial photodynamic therapy: An overview. J Indian Soc Periodontol, 15:323-327, 2011. https://doi.org/10.4103/0972-124X.92563
  6. Hakimiha N, Khoei F, Bahador A, Fekrazad R : The susceptibility of Streptococcus mutans to antibacterial photodynamic therapy: a comparison of two different photosensitizers and light sources. J Appl Oral Sci, 22:80-84, 2014. https://doi.org/10.1590/1678-775720130038
  7. Raut CP, Sethi KS, Warang A, et al. : Indocyanine greenmediated photothermal therapy in treatment of chronic periodontitis: A clinico-microbiological study. J Indian Soc Periodontol, 22:221-227, 2018. https://doi.org/10.4103/jisp.jisp_128_18
  8. Giraudeau C, Moussaron A, Frochot C, et al. : Indocyanine Green: Photosensitizer or Chromophore? Still a Debate. Curr Med Chem, 21:1871-1897, 2014. https://doi.org/10.2174/0929867321666131218095802
  9. Kim BG, Yeo DG, Na HB : Research trends in photothermal therapy using gold nanoparticles. Appl Chem Eng, 28:383-396, 2017. https://doi.org/10.14478/ace.2017.1039
  10. Nagahara A, Mitani A, Noguchi T, et al. : Antimicrobial photodynamic therapy using a diode laser with a potential new photosensitizer, indocyanine green-loaded nanospheres, may be effective for the clearance of Porphyromonas gingivalis. J Periodont Res, 48:591-599, 2013. https://doi.org/10.1111/jre.12042
  11. Pourhajibagher M, Chiniforush N, Bahador A, et al. : Sub-lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis. Photodiagnosis Photodyn Ther, 15:159-166, 2016. https://doi.org/10.1016/j.pdpdt.2016.06.003
  12. Henderson BW, Dougherty TJ : How does photodynamic therapy work? Photochem Photobiol, 55:145-157, 1992. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x
  13. Pirnat S : Versatility of an 810 nm diode laser in dentistry: An overview. J Laser Health Acad, 2007:1-9, 2007.
  14. Reindl S, Penzkofer A, Baumler W, et al. : Quantum yield of triplet formation for indocyanine green. J Photochem Photobiol, 105:65-68, 1997. https://doi.org/10.1016/S1010-6030(96)04584-4
  15. Engel E, Schraml R, Vasold R, et al. : Light-induced decomposition of indocyanine green. Invest Ophthalmol Vis Sci, 49:1777-1783, 2008. https://doi.org/10.1167/iovs.07-0911
  16. Meister J, Hopp M, Frentzen M, et al. : Indocyanine green (ICG) as a new adjuvant for the antimicrobial photo-dynamic therapy (aPDT) in dentistry. Lasers Dent, 8929:1-10, 2014.
  17. Saxena V, Sadoqi M, Shao J : Degradation kinetics of indocyanine green in aqueous solution. J Pharm Sci, 92:2090-2097, 2003. https://doi.org/10.1002/jps.10470
  18. Zach L, Cohen G : Pulp reponse to externally applied heat. Oral Surg Orl Med Oral Pathol, 19:515-530, 1965. https://doi.org/10.1016/0030-4220(65)90015-0
  19. Pohto M, Scheinin A : Microscopic observations on living dental pulp. Acto Odontol Scand, 16:303-327, 1958. https://doi.org/10.3109/00016355809064115
  20. Kreisler M, Al-Haj H, d'Hoedt B : Intrapulpal temperature changes during root surface irradiation with an 809-nm GaAlAs laser. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 93:730-735, 2002. https://doi.org/10.1067/moe.2002.124766