DOI QR코드

DOI QR Code

A semi-analytical study on the nonlinear pull-in instability of FGM nanoactuators

  • Attia, Mohamed A. (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University) ;
  • Abo-Bakr, Rasha M. (Deptartment of Mathematics, Faculty of Science, Zagazig University)
  • Received : 2019.07.18
  • Accepted : 2020.06.26
  • Published : 2020.11.25

Abstract

In this paper, a new semi-analytical solution for estimating the pull-in parameters of electrically actuated functionally graded (FG) nanobeams is proposed. All the bulk and surface material properties of the FG nanoactuator vary continuously in thickness direction according to power law distribution. Here, the modified couple stress theory (MCST) and Gurtin-Murdoch surface elasticity theory (SET) are jointly employed to capture the size effects of the nanoscale beam in the context of Euler-Bernoulli beam theory. According to the MCST and SET and accounting for the mid-plane stretching, axial residual stress, electrostatic actuation, fringing field, and dispersion (Casimir or/and van der Waals) forces, the nonlinear nonclassical equation of motion and boundary conditions are obtained derived using Hamilton principle. The proposed semi-analytical solution is derived by employing Galerkin method in conjunction with the Particle Swarm Optimization (PSO) method. The proposed solution approach is validated with the available literature. The freestanding behavior of nanoactuators is also investigated. A parametric study is conducted to illustrate the effects of different material and geometrical parameters on the pull-in response of cantilever and doubly-clamped FG nanoactuators. This model and proposed solution are helpful especially in mechanical design of micro/nanoactuators made of FGMs.

Keywords

References

  1. Abdi, J., Koochi, A., Kazemi, A.S. and Abadyan, M. (2011), "Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory", Smart Mater Struct, 20(5), 055011. https://doi.org/10.1088/0964-1726/20/5/055011.
  2. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  3. Askari, A.R. and Tahani, M. (2015), "Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory", Appl. Math. Model., 39(2), 934-946. https://doi.org/10.1016/j.apm.2014.07.019.
  4. Attia, M.A. (2017), "Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges", Meccanica, 52(10), 2391-2420. https://doi.org/10.1007/s11012-016-0595-8.
  5. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int J Eng. Sci., 115, 73-101. http://dx.doi.org/10.1016/j.ijengsci.2017.03.011.
  6. Attia, M.A. and El-Shafei, A.G. (2020), "Investigation of multibody receding frictional indentation problems of unbonded elastic functionally graded layers", Int. J. Mech. Sci., 105838. https://doi.org/10.1016/j.ijmecsci.2020.105838.
  7. Attia, M.A. and Emam, S.A., (2018), "Electrostatic nonlinear bending, buckling and free vibrations of viscoelastic microbeams based on the modified couple stress theory", Acta Mech., 229, 3235-3255. https://doi.org/10.1007/s00707-018-2162-y.
  8. Attia, M.A. and Mahmoud, F.F., (2016), "Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories", Int J Mech. Sci., 105, 126-134. http://dx.doi.org/10.1016/j.ijmecsci.2015.11.002.
  9. Attia, M.A. and Mohamed, S.A. (2017), "Nonlinear modeling and analysis of electrically actuated viscoelastic microbeams based on the modified couple stress theory", Appl. Math. Model., 41, 195-222. http://doi.org/10.1016/j.apm.2016.08.036.
  10. Attia, M.A. and Mohamed, S.A. (2018), "Pull-in instability of functionally graded cantilever nanoactuators incorporating effects of microstructure, surface energy and intermolecular forces", Int. J. Appl. Mech., 10(8), https://doi.org/10.1142/S1758825118500916.
  11. Attia, M.A. and Mohamed, S.A. (2019), "Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micro-/nanoswitches", Acta Mech., 230(3), 1181-1216. https://doi.org/10.1007/s00707-018-2345-6.
  12. Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.
  13. Attia, M.A. and Rahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127,1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  14. Attia, M.A., Shanab, R.A., Mohamed, S.A. and Mohamed, N.A. (2019), "Surface energy effects on the nonlinear free vibration of functionally graded Timoshenko nanobeams based on modified couple stress theory", Int. J. Struct. Stab. Dyn., 19(11), 1950127. https://doi.org/10.1142/S021945541950127X.
  15. Baghani, M. (2012), "Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory", Int. J. Eng. Sci., 54, 99-105. https://doi.org/10.1016/j.ijengsci.2012.01.001.
  16. Batra, R.C., Porfiri, M. and Spinello, D. (2008), "Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates", Sensors, 8(2), 1048-1069. https://doi.org/10.3390/s8021048.
  17. Bhojawala V. M. and Vakharia D. P. (2017), "Closed-form relation to predict static pull-in voltage of an electrostatically actuated clamped-clamped microbeam under the effect of Casimir force", Acta Mech, 228, 2583-2602. https://doi.org/10.3390/s8021048.
  18. Bochobza-Degani, O. and Nemirovsky, Y. (2002), "Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model", Sensors Actuators A, 97-98, 569-578. https://doi.org/10.1016/s0924-4247(01)00855-x.
  19. Duan, J., Li, Z. and Liu, J. (2016), "Pull-in instability analyses for NEMS actuators with quartic shape approximation", Appl. Math. Mech., 37(3), 303-314. https://doi.org/10.1007/s10483-015-2007-6.
  20. Eberhart, R., Shi, Y. and Kennedy, J. (2001), Swarm Intelligence, Elsevier, Amsterdam, Netherlands.
  21. Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. http://dx.doi.org/10.12989/sem.2017.61.6.721.
  22. Ebrahimi, F. and Barati, M.Z. (2018), "A unified formulation for modeling of inhomogeneous nonlocal beams", Struct Eng Mech., 66(3), 369-377. https://doi.org/10.12989/sem.2018.66.3.369.
  23. Ebrahimi, F. and Daman, M. (2017), "Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment", Struct. Eng. Mech., 64(1), 121-133. http://dx.doi.org/10.12989/sem.2017.64.1.121.
  24. Ebrahimi, F., Daman, M. and Fardshad, R.E. (2017). "Surface effects on vibration and buckling behavior of embedded nanoarches", Struct. Eng. Mech., 64(1), 1-10. http://dx.doi.org/10.12989/sem.2017.64.1.001.
  25. Esfahani, S., Khadem, S.E. and Mamaghani, A.E. (2019), "Nonlinear vibration analysis of an electrostatic functionally graded nano-resonator with surface effects based on nonlocal strain gradient theory", Int J. Mech. Sci., 151, 508-522. https://doi.org/10.1016/j.ijmecsci.2018.11.030.
  26. Farrokhabadi, A., Mohebshahedin, A., Rach, R. and Duan, J.S. (2016), "An improved model for the cantilever NEMS actuator including the surface energy, fringing field and Casimir effects", Physica E Low-dimensional Syst. Nanostruct., 75, 202-209. https://doi.org/10.1016/j.physe.2015.09.033.
  27. Fu, Y., Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Curr. Appl. Phys., 11(3), 482-485. https://doi.org/10.1016/j.cap.2010.08.037.
  28. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.
  29. Gutschmidt, S. (2010), "The infuence of higher-order mode shapes for reduced-order models of electrostatically actuated microbeams", J. Appl. Mech., 77, 041007. https://doi.org/10.1115/1.4000911.
  30. Hadji, L., Meziane, M.A.A. and Safa, A. (2018), "A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 66(6), 771-781. https://doi.org/10.12989/sem.2018.66.6.771.
  31. Haluzan, D.T., Klymyshyn, D.M., Achenbach, S. and Borner, M. (2010), "Reducing pull-in voltage by adjusting gap shape in electrostatically actuated cantilever and fixed-fixed beams", Micromachines, 1, 68-81. https://doi.org/10.3390/mi1020068.
  32. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  33. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization, Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 4, 1942-1948. http://dx.doi.org/10.1109/ICNN.1995.488968.
  34. Khelifa, Z., Hadji, L., Daouadji, T.H. and Bourada, M. (2018), "Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://doi.org/10.12989/sem.2018.67.2.125.
  35. Miandoab, E.M., Pishkenari, H.N., Meghdari, A. and Fathi, M. (2017), "A general closed-form solution for the static pull-in voltages of electrostatically actuated MEMS/NEMS", Physica E Low Dimens. Syst. Nanostruct., 90, 7-12. https://doi.org/10.1016/j.physe.2017.01.032.
  36. Nayfeh, A.H., Younis, M.I. and Abdel-Rahman, E.M. (2005), "Reduced-order models for MEMS applications", Nonlinear Dyn., 41, 211-236. https://doi.org/10.1007/s11071-005-2809-9.
  37. Osterberg, P.M. and Senturia, S.D. (1997), "M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures", J Microelectromech S., 6, 107-118. https://doi.org/ 10.1109/84.585788.
  38. Pamidighantam, S., Puers, R., Baert, K. and Tilmans, H.A.C. (2002), "Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions", J Micromech Microeng., 12, 458-464. http://iopscience.iop.org/0960-1317/12/4/319. https://doi.org/10.1088/0960-1317/12/4/319
  39. Qian, Y.H., Ren, D.X., Lai, S.K. and Chen, S.M. (2012), "Analytical approximations to nonlinear vibration of an electrostatically actuated microbeam", Commun. Nonlinear Sci. Numer. Simul., 17(4), 1947-1955. https://doi.org/10.1016/j.cnsns.2011.09.018.
  40. Radi, E., Bianchi, G. and di Ruvo, L. (2017), "Upper and lower bounds for the pull-in parameters of a micro-or nanocantilever on a flexible support", Int. J. Nonlin. Mech., 92, 176-186. http://dx.doi.org/10.1016/j.ijnonlinmec.2017.03.011.
  41. Radi, E., Bianchi, G. and di Ruvo, L. (2018), "Analytical bounds for the electromechanical buckling of a compressed nanocantilever", Appl. Math. Model., 59, 571-582. https://doi.org/10.1016/j.apm.2018.02.007.
  42. Rahaeifard, M., Kahrobaiyan, M.H. Asghari, M. and Ahmadian, M.T. (2011), "Static pull-in analysis of microcantilevers based on the modified couple stress theory", Sensor Actuat. A-Phys, 171, 370-374. https://doi.org/10.1016/j.sna.2011.08.025.
  43. Ramezani, A., Alasty, A. and Akbari, J. (2007), "Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces", Int. J. Solids Struct., 44(14-15), 4925-4941. https://doi.org/10.1016/j.ijsolstr.2006.12.015.
  44. Rhoads, J.F. Shaw, S.W. and Turner, K.L. (2006), "The nonlinear response of resonant microbeam systems with purely parametric electrostatic actuation", J Micromech Microeng., 16, 890-899. https://doi.org/ 10.1088/0960-1317/16/5/003.
  45. Rokni, H., Seethaler R.J. and Milani A.S. (2013), "Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation", Sensor Actuat. A-Phys, 190, 32-43. http://dx.doi.org/10.1016/j.sna.2012.10.035.
  46. Sadeghian, H., Rezazadeh, G. and Osterberg, P.M. (2007), "Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches", J Microelectromech S., 16,1334-1340. https://doi.org/10.1109/jmems.2007.909237.
  47. Sallai, B., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2015), "Analytical solution for bending analysis of functionally graded beam" Steel Comp. Struct., 19(4), 829-841. https://doi.org/10.1016/j.scient.2013.02.014.
  48. Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct., 124, 55-64. https://doi.org/10.1016/j.compstruct.2015.01.004.
  49. Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol., 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.
  50. Shaat, M. and Mohamed, S.A. (2014), "Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories", Int. J. Mech. Sci., 84, 208-217. https://doi.org/10.1016/j.ijmecsci.2014.04.020.
  51. Shanab, R.A., Attia, M.A. and Mohamed, S.A. (2017), "Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects", Int. J. Mech. Sci., 131, 908-923. https://doi.org/10.1016/j.ijmecsci.2017.07.055.
  52. Shanab, R.A., Attia, M.A., Mohamed, S.A. and Mohamed, N.A. (2020a), "Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium", J. Nano. Res., 61, 97-117. https://doi.org/10.4028/www.scientific.net/JNanoR.61.97.
  53. Shanab, R.A., Mohamed, S.A., Mohamed, N.A. and Attia, M.A. (2020b), "Comprehensive investigation of vibration of sigmoid and power law FG nanobeams based on surface elasticity and modified couple stress theories", Acta Mech., 231, 1977-2010. https://doi.org/10.1007/s00707-020-02623-9.
  54. She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H.B. (2018), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct Eng Mech., 66(6), 729-736. https://doi.org/ http://dx.doi.org/10.12989/sem.2018.66.6.729.
  55. Wagih, A., Attia, M.A., AbdelRahman, A.A., Bendine, K. and Sebaey, T.A. (2019), "On the indentation of elastoplastic functionally graded materials", Mech. Mater., 129, 169-188. https://doi.org/10.1016/j.mechmat.2018.11.012.
  56. Wang, B., Zhou, S. Zhao, J. and Chen, X. (2011), "Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS", J Micromech Microeng., 21, 1-6. https://doi.org/10.1088/0960-1317/21/2/027001.
  57. Yang, F., Chong, A.C. M., Lam, D.C.C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  58. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Comp. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  59. Zhang, L.X. and Zhao, Y.P. (2003), "Electromechanical model of RF MEMS switches", Microsyst. Technol., 9, 420-426. https://doi.org/10.1007/s00542-002-0250-2.