DOI QR코드

DOI QR Code

Recent advances in Studies of the Activity of Non-precious Metal Catalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells

고분자 전해질 연료전지용 산소환원반응을 위한 비백금촉매의 활성에 대한 최신 연구 동향

  • Yoon, Ho-Seok (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Jung, Won Suk (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Choe, Myeong-Ho (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University)
  • 윤호석 (한경대학교 식품생명화학공학부) ;
  • 정원석 (한경대학교 식품생명화학공학부) ;
  • 최명호 (한경대학교 식품생명화학공학부)
  • Received : 2020.11.17
  • Accepted : 2020.11.24
  • Published : 2020.11.30

Abstract

Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

수소의 화학반응 에너지를 직접 전기 에너지로 변환하는 Polymer electolyte membrane fuel cells (PEMFCs)는 친환경 미래 운송수단 에너지원의 한 종류이다. PEMFCs의 내부에 산소 환원 반응이 매우 느리고 고가의 백금을 사용하기 때문에 이를 대체하려는 연구가 국내외에서 매우 활발히 연구되고 있다. 하지만 백금이외에 값싼 재료를 이용한 촉매의 경우 여전히 성능이 매우 상이하며 활성 향상에 대한 지표 등이 다양하다. 이에 본 총설은 non-precious metal catalyst (NPMC)의 활성 지표 등을 정리하고 최근 5년간의 자료를 요약하였다. 이를 통해 촉매재료의 선별, 합성시 주안점, 조촉매 등을 설명하며, 촉매 활성에 대한 연구의 필요성을 상기 시킬 수 있다. 이를 통해 귀금속 촉매가 널리 사용되는 분야에 적용할 수 있는 NPMC의 연구 및 개발에 기여할 수 있을 것으로 보인다. 또한 향후 연구개발의 최종적인 목표를 기술한다.

Keywords

References

  1. H.-S. Park, S.-B. Han, D.-H. Kwak, J.-H. Han, and K.-W. Park, 'Fe nanoparticles encapsulated in doped graphitic shells as high-performance and stable catalysts for oxygen reduction reaction in an acid medium', J. Catal., 370, 130 (2019). https://doi.org/10.1016/j.jcat.2018.12.015
  2. Z. Li, X. Liang, Q. Gao, H. Zhang, H. Xiao, P. Xu, T. Zhang, and Z. Liu, 'Fe, N co-doped carbonaceous hollow spheres with self-grown carbon nanotubes as a high performance binary electrocatalyst', Carbon, 154, 466 (2019). https://doi.org/10.1016/j.carbon.2019.08.036
  3. R. Borup, J. Meyers, B. Pivovar, Y.-S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, and N. Iwashita, 'Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation', Chem. Rev., 107, 3904 (2007). https://doi.org/10.1021/cr050182l
  4. Z. Xiao, Y. Wu, S. Cao, W. Yan, B. Chen, T. Xing, Zhi Li, X. Lu, Y. Chen, K. Wang, and J. Jiang, 'An active site pre-anchoring and post-exposure strategy in Fe(CN)64-@PPy derived Fe/S/N-doped carbon electrocatalyst for high performance oxygen reduction reaction and zinc-air batteries', Chem. Eng. J., 127395 (2020).
  5. M. Lefevre, E. Proietti, F. Jaouen, and J.-P. Dodelet, 'Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells'. Science, 324, 71 (2009). https://doi.org/10.1126/science.1170051
  6. R. Othman, A. L. Dicks, and Z. Zhu, 'Non precious metal catalysts for the PEM fuel cell cathode', Int. J. Hydrogen Energy., 37, 357 (2012). https://doi.org/10.1016/j.ijhydene.2011.08.095
  7. Y. Shao, G. Yin, and Y. Gao, 'Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell', J. Power Sources, 171, 558 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.004
  8. L. Yang, J. Shui, L. Du and Y. Shao, J. Liu, L. Dai, and Z. Hu, 'Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future', Adv. Mater., 31, 1804799 (2019). https://doi.org/10.1002/adma.201804799
  9. W. Wang, Q. Jia, S. Mukerjee, and S. Chen, 'Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials', ACS Catal., 9, 10126 (2019). https://doi.org/10.1021/acscatal.9b02583
  10. Z. Tu, and C. Wang, 'Boosting the oxygen reduction reaction of a nonprecious metal Fe-Nx/C electrocatalyst by integrating tube-terminated edges into the basal plane of Fe- and N-codoped carbon bubbles', J. Alloys Compd., 843, 155809 (2020). https://doi.org/10.1016/j.jallcom.2020.155809
  11. Y Nie, L Li, and Z Wei, 'Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction'. Chem. Soc. Rev., 44, 2168 (2015). https://doi.org/10.1039/C4CS00484A
  12. C. Galeano, J. C. Meier, M. Soorholtz, H. Bongard, C. Baldizzone, K. J. J. Mayrhofer, and F. Schuth, 'Nitrogen-Doped Hollow Carbon Spheres as a Support for PlatinumBased Electrocatalysts', ACS Catal., 4, 3856 (2014). https://doi.org/10.1021/cs5003492
  13. A.-L.. Wang, C. Zhang, W. Zhou, Y.-X. Tong, and G.-R. Li, AIChE J., 'PtCu alloy nanotube arrays supported on carbon fiber cloth as flexible anodes for direct methanol fuel cell', AlChE journal, 62, 975 (2016). https://doi.org/10.1002/aic.15178
  14. A. Morozan, B. Jousselme, and S. Palacin, 'Lowplatinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes', Energy Environ. Sci., 4, 1238 (2011). https://doi.org/10.1039/c0ee00601g
  15. A. A. Gewirth, J. A. Varnell, and A. M. DiAscro, 'Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems', Chem. Rev., 118, 2313 (2018). https://doi.org/10.1021/acs.chemrev.7b00335
  16. X. Zhang, Y. B. Mollamahale, D. Lyu, L.. Liang, F. Yu, M. Qing, Y. Du, X. Zhang, Z.. Q. Tian, and P. K. Shen, 'Molecular-level design of Fe-N-C catalysts derived from Fe-dual pyridine coordination complexes for highly efficient oxygen reduction', J. Catal., 372, 245 (2019) https://doi.org/10.1016/j.jcat.2019.03.003
  17. J.-W. Park, H.-J. Lee, Y.-E. Bae, K.-C. Park, H. Ji, N.-C. Jeong, M.-H. Lee, O.-J. Kwon, and C.-Y. Lee, 'Dual-Functional Electrocatalyst Derived from Iron-Porphyrin-Encapsulated Metal-Organic Frameworks', ACS Appl. Mater. Interfaces, 9, 28758 (2017). https://doi.org/10.1021/acsami.7b08786
  18. T. Feng, W. Liao, Z. Li, L. Sun, D. Shi, C. Guo, Y. Huang, Y. Wang, J. Cheng, Y. Li, and Q. Diao, 'Heavily graphitic-nitrogen self-doped high-porosity carbon for the electrocatalysis of oxygen reduction reaction'. Nanoscale Res. lett., 12, 1 (2017). https://doi.org/10.1186/s11671-016-1773-2
  19. M. Sun, X. Wu, C. Liu, Z. Xie, X. Deng, W. Zhang, Q. Huang, and B. Huang, 'The in situ grown of activated Fe-NC nanofibers derived from polypyrrole on carbon paper and its electro-catalytic activity for oxygen reduction reaction', J. Solid State Electrochem, 22, 1217 (2018). https://doi.org/10.1007/s10008-017-3860-4
  20. J. Li, S. Chen, W. Li, R. Wu, S. Ibraheem, J. Li, W. Ding, L. Li, and Z. Wei, 'eutectic salt-assisted semiclosed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction', J. Mater. Chem. A, 6, 15504 (2018). https://doi.org/10.1039/C8TA05419C
  21. B. Liu, B. Huang, C. Lin, J. Ye, and L. Ouyang, 'Porous carbon supported Fe-N-C composite as an efficient electrocatalyst for oxygen reduction reaction in alkaline and acidic media', Appl. Surf. Sci., 411, 487 (2017). https://doi.org/10.1016/j.apsusc.2017.03.150
  22. R. Wu, Y. Song, X. Huang, S. Chen, S. Ibraheem, J. Deng, J. Li, X. Qi, and Z. Wei, 'High-density active sites porous Fe/N/C electrocatalyst boosting the performance of proton exchange membrane fuel cells', J. Power Sources, 401, 287 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.096
  23. Q. Liu, C. Guo, L. Sun, R. Zhou, Y. Liu, W. Sun, S. Xiang, Y. Li, Y. Si, and Z.. Luo, 'High active-site availability on Fe-N-C oxygen reduction electrocatalysts derived from iron(II) complexes of phenanthroline with a K2C2O4 promoter', J. Alloys Compd., 809, 151822 (2019). https://doi.org/10.1016/j.jallcom.2019.151822
  24. C. Zuniga, C. Candia-Onfray, R. Venegas, K. Munoz, J. Urra, M. Sanchez-Arenillas, J. F. Marco, J. H. Zagal, and F. J. Recio, 'Elucidating the mechanism of the oxygen reduction reaction for pyrolyzed Fe-N-C catalysts in basic media', Electrochem Commun, 102, 78 (2019). https://doi.org/10.1016/j.elecom.2019.04.005
  25. N. Ramaswamy, U. Tylus, Q. Jia, and S. Mukerjee, 'Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry', J. Am. Chem. Soc., 135, 15443 (2013). https://doi.org/10.1021/ja405149m
  26. Y. Luo, J. Zhang, Y. Chen, Z. Li, J. Chen, G. Wang, and R. Wang, 'MOF-derived porous carbon supported ironbased catalysts with optimized active sites towards oxygen reduction reaction', J. Electroanal Chem., 847, 113191 (2019). https://doi.org/10.1016/j.jelechem.2019.113191
  27. X. Li, G. Liu, and B. N. Popov, 'Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes', J. Power Sources, 195, 6373 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.019
  28. M. S. Ahmed, H. Begum, and Y.-B. Kim, 'Iron nanoparticles implanted metal-organic-frameworks based Fe-N-C catalysts for high-performance oxygen reduction reaction', J. Power Sources, 451, 227733 (2020). https://doi.org/10.1016/j.jpowsour.2020.227733
  29. F. Li, Z. Chen, P, Shi, P. Tan, G. Li, and Y. Liu, 'Facile preparation of trace-iron doped manganese oxide/Ndoped ketjenblack carbon composite for efficient ORR electrocatalyst', J Taiwan Inst Chem Eng, 100, 230 (2019). https://doi.org/10.1016/j.jtice.2019.04.030
  30. S. Hu, W. Ni, D. Yang, C. Ma, J. Zhang, J. Duan, Y. Gao, and S. Zhang, 'Fe3O4 nanoparticles encapsulated in single-atom Fe-N-C towards efficient oxygen reduction reaction: Effect of the micro and macro pores', Carbon, 162, 245 (2020). https://doi.org/10.1016/j.carbon.2020.02.059
  31. Y. Huang, W. Liu, S. Kan, P. Liu, R. Hao, H. Hu, J. Zhang, H. Liu, M. Liu, and K. Liu, 'Tuning morphology and structure of Fe-N-C catalyst for ultra-high oxygen reduction reaction activity', Int. J. Hydrogen Energy, 45, 6380 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.130
  32. X. Zhang, X. Huang, W. Hu, and Y. Huang, 'A metalorganic framework-derived Fe-N-C electrocatalyst with highly dispersed Fe-Nx towards oxygen reduction reaction', Int. J. Hydrogen Energy, 44, 27379 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.190
  33. H. Wei, X. Su, J. Liu, J. Tian, Z. Wang, K. Sun, Z. Rui, W. Yang, and Z. Zou, 'A CeO2 modified phenylenediamine-based Fe/N/C with enhanced durability/stability as non-precious metal catalyst for oxygen reduction reaction', Electrochem commun, 88, 19 (2018). https://doi.org/10.1016/j.elecom.2018.01.011
  34. H. Xu, and X. Hou, 'Synergistic effect of CeO2 modified Pt/C electrocatalysts on the performance of PEM fuel cells', Int. J. Hydrogen Energy, 32, 4397 (2007). https://doi.org/10.1016/j.ijhydene.2007.05.041
  35. X. Yin, W. Utetiwabo, S. Sun, Y. Lian, R. Chen, W. Yang, 'Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell', J. Catal., 374, 43 (2019) https://doi.org/10.1016/j.jcat.2019.04.028