DOI QR코드

DOI QR Code

Enhanced Electrochemical Properties of All-Solid-State Batteries Using a Surface-Modified LiNi0.6Co0.2Mn0.2O2 Cathode

  • Lim, Chung Bum (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • 투고 : 2020.05.04
  • 심사 : 2020.08.07
  • 발행 : 2020.11.30

초록

Undesirable interfacial reactions between the cathode and sulfide electrolyte deteriorate the electrochemical performance of all-solid-state cells based on sulfides, presenting a major challenge. Surface modification of cathodes using stable materials has been used as a method for reducing interfacial reactions. In this work, a precursor-based surface modification method using Zr and Mo was applied to a LiNi0.6Co0.2Mn0.2O2 cathode to enhance the interfacial stability between the cathode and sulfide electrolyte. The source ions (Zr and Mo) coated on the precursor-surface diffused into the structure during the heating process, and influenced the structural parameters. This indicated that the coating ions acted as dopants. They also formed a homogenous coating layer, which are expected to be layers of Li-Zr-O or Li-Mo-O, on the surface of the cathode. The composite electrodes containing the surface-modified LiNi0.6Co0.2Mn0.2O2 powders exhibited enhanced electrochemical properties. The impedance value of the cells and the formation of undesirable reaction products on the electrodes were also decreased due to surface modification. These results indicate that the precursor-based surface modification using Zr and Mo is an effective method for suppressing side reactions at the cathode/sulfide electrolyte interface.

키워드

참고문헌

  1. X. Wang, K. Jiang, G. Shen, Mater Today., 2015, 18(5), 265-272. https://doi.org/10.1016/j.mattod.2015.01.002
  2. J.B. Goodenough, K.S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176. https://doi.org/10.1021/ja3091438
  3. H. Lee, S.B. Lim, J.Y. Kim, M. Jeong, Y.J. Park, W.S. Yoon, ACS Appl. Mater. Interfaces., 2018, 10(13), 10804-10818. https://doi.org/10.1021/acsami.7b12722
  4. G. Assat, J.M. Tarascon, Nat Energy., 2018, 3(5), 373-386. https://doi.org/10.1038/s41560-018-0097-0
  5. S.Y. Lee, Y.J. Park, Sci Rep., 2019, 9, 13180. https://doi.org/10.1038/s41598-019-49806-6
  6. H.V. Ramasamy, S. Sinha, J. Park, M. Gong, V. Aravindan, J. Heo, Y.S. Lee, J Electrochem Sci Te., 2019, 10(2), 196-205. https://doi.org/10.5229/jecst.2019.10.2.196
  7. T.M. Nguyen, J. Suk, Y. Kang, J Electrochem Sci Te., 2019, 10(2), 250-255. https://doi.org/10.5229/jecst.2019.10.2.250
  8. X. Judez, H. Zhang, C. Li, G.G. Eshetu, J.A. GonzalezMarcos, M. Armand, L.M. Rodriguez-Martinez, J Electrochem Soc., 2017, 165(1), A6008. https://doi.org/10.1149/2.0041801jes
  9. K.H. Park, Q. Bai, D.H. Kim, D.Y. Oh, Y. Zhu, Y. Mo, Y.S. Jung, Adv. Energy Mater, 2018, 1800035. https://doi.org/10.1002/aenm.201800035
  10. M. Tatsumisago, M. Nagao, A. Hayashi, J Asian Ceram Soc., 2013, 1(10), 17-25. https://doi.org/10.1016/j.jascer.2013.03.005
  11. W. Zhang, D.A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schroder, R. Koerver, T. Leichtweiss, P. Hartmann, W.G. Zeier, J. Janek, ACS Appl. Mater. Interfaces., 2017, 9(21), 17835-17845. https://doi.org/10.1021/acsami.7b01137
  12. H.W. Kwak, Y.J. Park, Sci Rep., 2019, 9(1), 1-9.
  13. K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, J Electrochem Soc., 2017, 164(7), A1731. https://doi.org/10.1149/2.1571707jes
  14. C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Nano Energy., 2017, 33, 363-386. https://doi.org/10.1016/j.nanoen.2017.01.028
  15. T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Nature Mater., 2019, 18, 1278-1291. https://doi.org/10.1038/s41563-019-0431-3
  16. Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Adv Mater., 2018, 30(17), 1705702. https://doi.org/10.1002/adma.201705702
  17. S.A. Pervez, M.A. Cambaz, V. Thangadurai, M. Fichtner, ACS Appl. Mater. Interfaces., 2019, 11(25), 22029-22050. https://doi.org/10.1021/acsami.9b02675
  18. Z. Hu, J. Sheng, J. Chen, G. Sheng, Y. Li, X.Z. Fu, L. Wang, R. Sun, C.P. Wong, New J Chem., 2018, 42(11), 9074-9079. https://doi.org/10.1039/c8nj01113c
  19. S. Song, B. Chen, Y. Ruan, J. Sun, L. Yu, Y. Wang, J. Thokchom, Electrochim Acta., 2018, 270, 501-508. https://doi.org/10.1016/j.electacta.2018.03.101
  20. Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y. bing He, F. Kang, B. Li, J Power Sources., 2018, 389, 120-134. https://doi.org/10.1016/j.jpowsour.2018.04.019
  21. S.-J. Choi, S.-H. Lee, Y.-C. Ha, J.-H. Yu, C.-H. Doh, Y. Lee, J.-W. Park, S.-M. Lee, H.-C. Shin, J Electrochem Soc., 2018, 165(5), A957. https://doi.org/10.1149/2.0981805jes
  22. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat Mater., 2011, 10(9), 682-686. https://doi.org/10.1038/nmat3066
  23. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat Energy., 2016, 1(4), 1-7.
  24. H.W. Kwak, Y.J. Park, Thin Solid Films., 2018, 660, 625-630. https://doi.org/10.1016/j.tsf.2018.04.038
  25. T. Swamy, X. Chen, Y.M. Chiang, Chem Mater., 2019, 31(3), 707-713. https://doi.org/10.1021/acs.chemmater.8b03420
  26. S.-K. Jung, H. Gwon, S.-S. Lee, H. Kim, J.C. Lee, J.G. Chung, S.Y. Park, Y. Aihara, J Mater Chem A., 2019, 7(40), 22967-22976. https://doi.org/10.1039/C9TA08517C
  27. F. Walther, R. Koerver, T. Fuchs, S. Ohno, J. Sann, M. Rohnke, W.G. Zeier, J. Janek, Chem. Mater., 2019, 31(10), 3745-3755. https://doi.org/10.1021/acs.chemmater.9b00770
  28. Y. Xiao, L.J. Miara, Y. Wang, G. Ceder, Joule, 2019, 3(5), 1252-1275. https://doi.org/10.1016/j.joule.2019.02.006
  29. N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, T. Sasaki, Electrochem Commun., 2007, 9(7), 1486-1490. https://doi.org/10.1016/j.elecom.2007.02.008
  30. X. Li, L. Jin, D. Song, H. Zhang, X. Shi, Z. Wang, L. Zhang, L. Zhu, J Energy Chem., 2020, 40, 39-45. https://doi.org/10.1016/j.jechem.2019.02.006
  31. S. Teng, J. Tan, A. Tiwari, Curr Opin Solid State Mater Sci., 2014, 18(1), 29-38. https://doi.org/10.1016/j.cossms.2013.10.002
  32. S. Noh, J. Kim, M. Eom, D. Shin, Ceram Int., 2013, 39(7), 8453-8458. https://doi.org/10.1016/j.ceramint.2013.04.027
  33. V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev, 2014, 43(13), 4714-4727. https://doi.org/10.1039/c4cs00020j
  34. D. Wang, X. Li, Z. Wang, H. Guo, Z. Huang, L. Kong, J. Ru, J Alloys Compd., 2015, 647, 612-619. https://doi.org/10.1016/j.jallcom.2015.06.071
  35. X. Ren, J. Du, Z. Pu, R. Wang, L. Gan, Z. Wu, Ionics, 2020, 1-11.
  36. J. Zhang, Z. Li, R. Gao, Z. Hu, X. Liu, J Phys Chem C., 2015, 119(35), 20350-20356. https://doi.org/10.1021/acs.jpcc.5b06858
  37. H. Kim, D. Byun, W. Chang, H.-G. Jung, W. Choi, J Mater Chem A., 2017, 5(47), 25077-25089. https://doi.org/10.1039/C7TA07898F
  38. S. Sivaprakash, S.B. Majumder, J Alloys Compd., 2009, 479(1-2), 561-568. https://doi.org/10.1016/j.jallcom.2008.12.129
  39. Y. Wang, T. Matsuyama, M. Deguchi, A. Hayashi, A. Nakao, M. Tatsumisago, J. Ceram Soc. Jpn., 2016, 124(5), 597-601. https://doi.org/10.2109/jcersj2.16006
  40. R. Koerver, F. Walther, I. Aygun, A. Aygun, J. Sann, C. Dietrich, W.G. Zeier, J. Urgen Janek, J Mater Chem A., 2017, 5(43), 22750-22760. https://doi.org/10.1039/C7TA07641J